Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Med Chem ; 67(11): 9342-9354, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38753457

RESUMEN

Until the recent years, substances containing radioactive 61Cu were strongly considered as potential positron-emitting radiopharmaceuticals for use in positron emission tomography (PET) applications; however, due to their suitably long half-life, and generator-independent and cost-effective production, they seem to be economically viable for human imaging. Since malignant melanoma (MM) is a major public health problem, its early diagnosis is a crucial contributor to long-term survival, which can be achieved using radiolabeled α-melanocyte-stimulating hormone analog NAPamide derivatives. Here, we report on the physicochemical features of a new CB-15aneN5-based Cu(II) complex ([Cu(KFTGdiac)]-) and the ex vivo and in vivo characterization of its NAPamide conjugate. The rigid chelate possesses prompt complex formation and suitable inertness (t1/2 = 18.4 min in 5.0 M HCl at 50 °C), as well as excellent features in the diagnosis of B16-F10 melanoma tumors (T/M(SUVs) (in vivo): 12.7, %ID/g: 6.6 ± 0.3, T/M (ex vivo): 22).


Asunto(s)
Radioisótopos de Cobre , Melanoma Experimental , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos , Ratones , Radiofármacos/química , Radiofármacos/síntesis química , Melanoma Experimental/diagnóstico por imagen , Melanoma/diagnóstico por imagen , Ratones Endogámicos C57BL , Humanos , Línea Celular Tumoral , Distribución Tisular , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339036

RESUMEN

Human Galectin-3 (hGal-3) is a protein that selectively binds to ß-galactosides and holds diverse roles in both normal and pathological circumstances. Therefore, targeting hGal-3 has become a vibrant area of research in the pharmaceutical chemistry. As a step towards the development of novel hGal-3 inhibitors, we synthesized and investigated derivatives of thiodigalactoside (TDG) modified with different aromatic substituents. Specifically, we describe a high-yielding synthetic route of thiodigalactoside (TDG); an optimized procedure for the synthesis of the novel 3,3'-di-O-(quinoline-2-yl)methyl)-TDG and three other known, symmetric 3,3'-di-O-TDG derivatives ((naphthalene-2yl)methyl, benzyl, (7-methoxy-2H-1-benzopyran-2-on-4-yl)methyl). In the present study, using competition Saturation Transfer Difference (STD) NMR spectroscopy, we determined the dissociation constant (Kd) of the former three TDG derivatives produced to characterize the strength of the interaction with the target protein (hGal-3). Based on the Kd values determined, the (naphthalen-2-yl)methyl, the (quinolin-2-yl)methyl and the benzyl derivatives bind to hGal-3 94, 30 and 24 times more strongly than TDG. Then, we studied the binding modes of the derivatives in silico by molecular docking calculations. Docking poses similar to the canonical binding modes of well-known hGal-3 inhibitors have been found. However, additional binding forces, cation-π interactions between the arginine residues in the binding pocket of the protein and the aromatic groups of the ligands, have been established as significant features. Our results offer a molecular-level understanding of the varying affinities observed among the synthesized thiodigalactoside derivatives, which can be a key aspect in the future development of more effective ligands of hGal-3.


Asunto(s)
Galectina 3 , Tiogalactósidos , Humanos , Galectina 3/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Tiogalactósidos/química , Tiogalactósidos/farmacología
3.
Anal Chem ; 95(28): 10504-10511, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37344969

RESUMEN

Gel permeation chromatography (GPC) is a generally applied method for the mass analysis of various polymers and copolymers, but it inherently fails to provide additional important information such as the composition of copolymers. However, we will show that GPC measurements using different solvents can yield not just the correct molecular weight but the composition of the copolymer. Accordingly, artificial neural networks (ANNs) have been developed to process the data of GPC measurements and determine the molecular weight and the chemical composition of the copolymers. The target values of the ANNs were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) spectroscopy. Our GPC-ANN method is demonstrated by the analysis of various poloxamers, i.e., poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO) block copolymers. Two ANNs were constructed. The first one (ANN_1) works in a wider mass range (from 900 to 12,500 dalton), while the second one (ANN_2) produces more output values. ANN_2 can thus predict seven characteristic copolymer parameters, namely, two average molecular weights, the average weight fraction of the EO unit, and four average numbers of the repeat units. The correlation between the experimentally obtained outputs and the predicted ones is high (r > 0.98). The accuracy of the ANNs is very convincing, and both ANNs predict the number-average molecular weight (Mn) with an accuracy below 5%. Furthermore, this work is the first step for creating an open database and applications extending the use of the GPC-ANN method for the analysis of copolymers.

4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902219

RESUMEN

Identification of specific protein phosphatase-1 (PP1) inhibitors is of special importance regarding the study of its cellular functions and may have therapeutic values in diseases coupled to signaling processes. In this study, we prove that a phosphorylated peptide of the inhibitory region of myosin phosphatase (MP) target subunit (MYPT1), R690QSRRS(pT696)QGVTL701 (P-Thr696-MYPT1690-701), interacts with and inhibits the PP1 catalytic subunit (PP1c, IC50 = 3.84 µM) and the MP holoenzyme (Flag-MYPT1-PP1c, IC50 = 3.84 µM). Saturation transfer difference NMR measurements established binding of hydrophobic and basic regions of P-Thr696-MYPT1690-701 to PP1c, suggesting interactions with the hydrophobic and acidic substrate binding grooves. P-Thr696-MYPT1690-701 was dephosphorylated by PP1c slowly (t1/2 = 81.6-87.9 min), which was further impeded (t1/2 = 103 min) in the presence of the phosphorylated 20 kDa myosin light chain (P-MLC20). In contrast, P-Thr696-MYPT1690-701 (10-500 µM) slowed down the dephosphorylation of P-MLC20 (t1/2 = 1.69 min) significantly (t1/2 = 2.49-10.06 min). These data are compatible with an unfair competition mechanism between the inhibitory phosphopeptide and the phosphosubstrate. Docking simulations of the PP1c-P-MYPT1690-701 complexes with phosphothreonine (PP1c-P-Thr696-MYPT1690-701) or phosphoserine (PP1c-P-Ser696-MYPT1690-701) suggested their distinct poses on the surface of PP1c. In addition, the arrangements and distances of the surrounding coordinating residues of PP1c around the phosphothreonine or phosphoserine at the active site were distinct, which may account for their different hydrolysis rate. It is presumed that P-Thr696-MYPT1690-701 binds tightly at the active center but the phosphoester hydrolysis is less preferable compared to P-Ser696-MYPT1690-701 or phosphoserine substrates. Moreover, the inhibitory phosphopeptide may serve as a template to synthesize cell permeable PP1-specific peptide inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Fosfopéptidos , Proteína Fosfatasa 1 , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosfopéptidos/química , Fosfopéptidos/farmacología , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
5.
ACS Omega ; 7(47): 43283-43289, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467931

RESUMEN

The original homonuclear decoupled (pure shift) experiments provide ultrahigh-resolution 1H spectra of compounds containing NMR-active heteronuclei of low natural isotopic abundance (e.g., 13C or 15N). In contrast, molecules containing highly abundant heteronuclei (like 31P or 19F) give doublets or a multiple of doublets in their homonuclear decoupled spectra, depending on the number of heteronuclear coupling partners and the magnitude of the respective coupling constants. In these cases, the complex and frequently overlapping signals may hamper the unambiguous assignment of resonances. Here, we present new heteronuclear decoupled (HD) PSYCHE 1H and TOCSY experiments, which result in simplified spectra with significantly increased resolution, allowing the reliable assessment of individual resonances. The utility of the experiments has been demonstrated on a challenging stereoisomeric mixture of a platinum-phosphine complex, where ultrahigh resolution of the obtained HD PSYCHE spectra made the structure elucidation of the chiral products feasible. HD PSYCHE methods can be potentially applied to other important 31P- or 19F-containing compounds in medicinal chemistry and metabolomics.

6.
J Org Chem ; 87(23): 15830-15836, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36411253

RESUMEN

l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.


Asunto(s)
Heparinoides , Ácido Idurónico , Oligosacáridos/farmacología , Anticoagulantes/farmacología , Manosa
7.
J Magn Reson ; 343: 107297, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36174396

RESUMEN

The NMR pulse sequence design strategy of NORD (NO Relaxation Delay) is extended to design of two new three-module experiments, NORD {HMBC}-{HSQC-TOCSY}-{TOCSY} and NORD {HMBC}-{2BOB}-{TOCSY}, each delivering four spectra - HMBC, HSQC, TOCSY, and either HSQC-TOCSY or H2BC. Compared to individual recording of these spectra particularly the sensitivity of the least sensitive module, HMBC, is enhanced by designing the homonuclear TOCSY module to allow buildup of magnetization pertinent to HMBC during its execution. Effectively, the sensitivity of the heteronuclear modules is boosted at the expense of the inherently much higher TOCSY sensitivity, thus resulting in a significant saving in spectrometer time.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
8.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269646

RESUMEN

Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(ß-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(ß-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.


Asunto(s)
Proteínas Sanguíneas/química , Galectina 3 , Galectinas/química , Cristalografía por Rayos X , Galactosa , Galectina 3/metabolismo , Galectinas/metabolismo , Humanos , Unión Proteica
9.
Methods Mol Biol ; 2442: 105-123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320522

RESUMEN

Their emerging nature as multifunctional effectors explains the large interest to monitor glycan binding to galectins and to define bound-state conformer(s) of their ligands in solution. Basically, NMR spectroscopy facilitates respective experiments. Towards developing new and even better approaches for these purposes, extending the range of exploitable isotopes beyond 1H, 13C, and 15N offers promising perspectives. Having therefore prepared selenodigalactoside and revealed its bioactivity as galectin ligand, monitoring of its binding by 77Se NMR spectroscopy at a practical level becomes possible by setting up a 2D 1H, 77Se CPMG-HSQBMC experiment including CPMG-INEPT long-range transfer. This first step into applying 77Se as sensor for galectin binding substantiates its potential for screening relative to inhibitory potencies in compound mixtures and for achieving sophisticated epitope mapping. The documented strategic combination of synthetic carbohydrate chemistry and NMR spectroscopy prompts to envision to work with isotopically pure 77Se-containing ß-galactosides and to build on the gained experience with 77Se by adding 19F as second sensor in doubly labeled glycosides.


Asunto(s)
Carbohidratos , Galectinas , Carbohidratos/química , Galectinas/metabolismo , Glicósidos , Ligandos , Espectroscopía de Resonancia Magnética/métodos
10.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162960

RESUMEN

Inhibition of the human O-linked ß-N-acetylglucosaminidase (hOGA, GH84) enzyme is pharmacologically relevant in several diseases such as neurodegenerative and cardiovascular disorders, type 2 diabetes, and cancer. Human lysosomal hexosaminidases (hHexA and hHexB, GH20) are mechanistically related enzymes; therefore, selective inhibition of these enzymes is crucial in terms of potential applications. In order to extend the structure-activity relationships of OGA inhibitors, a series of 2-acetamido-2-deoxy-d-glucono-1,5-lactone sulfonylhydrazones was prepared from d-glucosamine. The synthetic sequence involved condensation of N-acetyl-3,4,6-tri-O-acetyl-d-glucosamine with arenesulfonylhydrazines, followed by MnO2 oxidation to the corresponding glucono-1,5-lactone sulfonylhydrazones. Removal of the O-acetyl protecting groups by NH3/MeOH furnished the test compounds. Evaluation of these compounds by enzyme kinetic methods against hOGA and hHexB revealed potent nanomolar competitive inhibition of both enzymes, with no significant selectivity towards either. The most efficient inhibitor of hOGA was 2-acetamido-2-deoxy-d-glucono-1,5-lactone 1-naphthalenesulfonylhydrazone (5f, Ki = 27 nM). This compound had a Ki of 6.8 nM towards hHexB. To assess the binding mode of these inhibitors to hOGA, computational studies (Prime protein-ligand refinement and QM/MM optimizations) were performed, which suggested the binding preference of the glucono-1,5-lactone sulfonylhydrazones in an s-cis conformation for all test compounds.


Asunto(s)
Antígenos de Neoplasias/química , Histona Acetiltransferasas/química , Hialuronoglucosaminidasa/química , Hidrazonas/síntesis química , Lactonas/química , Cadena beta de beta-Hexosaminidasa/química , Antígenos de Neoplasias/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Histona Acetiltransferasas/metabolismo , Humanos , Hialuronoglucosaminidasa/metabolismo , Hidrazonas/química , Hidrazonas/farmacología , Compuestos de Manganeso/química , Modelos Moleculares , Conformación Molecular , Óxidos/química , Relación Estructura-Actividad , Cadena beta de beta-Hexosaminidasa/metabolismo
11.
Pharmaceutics ; 14(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35057096

RESUMEN

Detailed investigation of ligand-protein interactions is essential for better understanding of biological processes at the molecular level. Among these binding interactions, the recognition of glycans by lectins is of particular importance in several diseases, such as cancer; therefore, inhibition of glycan-lectin/galectin interactions represents a promising perspective towards developing therapeutics controlling cancer development. The recent introduction of 77Se NMR spectroscopy for monitoring the binding of a selenoglycoside to galectins prompted interest to optimize the sensitivity by increasing the 77Se content from the natural 7.63% abundance to 99%. Here, we report a convenient synthesis of 77Se-enriched selenodigalactoside (SeDG), which is a potent ligand of the medically relevant human galectin-3 protein, and proof of the expected sensitivity gain in 2D 1H, 77Se correlation NMR experiments. Our work opens perspectives for adding isotopically enriched selenoglycans for rapid monitoring of lectin-binding of selenated as well as non-selenated ligands and for ligand screening in competition experiments.

12.
Chem Commun (Camb) ; 58(15): 2516-2519, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35094037

RESUMEN

The NMR experiment design strategy of NO Relaxation Delay (NORD), introduced mostly as an idealized theoretical approach, is extended and put to practical use by considering synergy and sensitivity-balance in concatenation of experiments. It is illustrated by a novel experiment, NORD {HMBC}-{HSQC}-{TOCSY}, where magnetization of non-13C attached protons effectively is channeled from the TOCSY spectrum toward primarily the least sensitive spectrum of HMBC. The experiment is expected to find its place as a full-package NMR method for metabolomics, carbohydrates, peptides and small-molecules in general.


Asunto(s)
Óxido Nítrico/análisis , Isótopos de Carbono , Espectroscopía de Resonancia Magnética
13.
Eur J Med Chem ; 223: 113649, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34186233

RESUMEN

O-GlcNAcylation is a dynamic post-translational modification mediated by O-linked ß-N-acetylglucosamine transferase (OGT) and O-GlcNAc hydrolase (OGA), that adds or removes a single ß-N-acetylglucosamine (GlcNAc) moiety to or from serine/threonine residues of nucleocytosolic and mitochondrial proteins, respectively. The perturbed homeostasis of O-GlcNAc cycling results in several pathological conditions. Human OGA is a promising therapeutic target in diseases where aberrantly low levels of O-GlcNAc are experienced, such as tauopathy in Alzheimer's disease. A new class of potent OGA inhibitors, 2-acetamido-2-deoxy-d-glucono-1,5-lactone (thio)semicarbazones, have been identified. Eight inhibitors were designed and synthesized in five steps starting from d-glucosamine and with 15-55% overall yields. A heterologous OGA expression protocol with strain selection and isolation has been optimized that resulted in stable, active and full length human OGA (hOGA) isomorph. Thermal denaturation kinetics of hOGA revealed environmental factors affecting hOGA stability. From kinetics experiments, the synthesized compounds proved to be efficient competitive inhibitors of hOGA with Ki-s in the range of ∼30-250 nM and moderate selectivity with respect to lysosomal ß-hexosaminidases. In silico studies consisting of Prime protein-ligand refinements, QM/MM optimizations and QM/MM-PBSA binding free energy calculations revealed the factors governing the observed potencies, and led to design of the most potent analogue 2-acetamido-2-deoxy-d-glucono-1,5-lactone 4-(2-naphthyl)-semicarbazone 6g (Ki = 36 nM). The protocol employed has applications in future structure based inhibitor design targeting OGA.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Inhibidores Enzimáticos/química , Histona Acetiltransferasas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Lactonas/química , Semicarbazonas/química , Antígenos de Neoplasias/genética , Sitios de Unión , Inhibidores Enzimáticos/metabolismo , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Humanos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/genética , Cinética , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Teoría Cuántica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Semicarbazonas/metabolismo , Relación Estructura-Actividad
14.
J Chem Inf Model ; 61(6): 2926-2936, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34029080

RESUMEN

Elucidation and improvement of the blood coagulant properties of heparin are the focus of intense research. In this study, we performed conformational analysis using nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations on the heparin pentasaccharide analogue idraparinux, its disulfonatomethyl analogue, which features a slightly improved blood coagulation property, and a trisulfonatomethyl analogue, in which the activity has been totally abolished. As the ring conformation of the G subunit has been suggested as a major determinant of the biological properties, we analyzed the sugar ring conformations and dynamics of the interglycosidic linkages. We found that the conformation of the G ring is dominated by the 2SO skewed boat next to the 1C4 chair in all three derivatives. Both the thermodynamics and the kinetics of the conformational states were found to be highly similar in the three derivatives. Molecular kinetic analysis showed that the 2SO skewed boat state of the G ring is equally favorable in the three analogues, resulting in similar 2SO populations. Also, the transition kinetics from the 1C4 chair to the 2SO skewed boat was found to be comparable in the derivatives, which indicates a similar energy barrier between the two states of the G subunit. We also identified a slower conformational transition between the dominant 4C1 chair and the boat conformations on the E subunit. Both G and E ring flips are also accompanied by changes along the interglycosidic linkages, which take place highly synchronously with the ring flips. These findings indicate that conformational plasticity of the G ring and the dominance of the 2SO skewed boat populations do not necessarily warrant the biological activity of the derivatives and hence the impact of other factors also needs to be considered.


Asunto(s)
Heparina , Simulación de Dinámica Molecular , Cinética , Espectroscopía de Resonancia Magnética , Oligosacáridos
15.
Anal Chem ; 93(6): 3096-3102, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33534547

RESUMEN

Resonance assignment is a pivotal step for any nuclear magnetic resonance (NMR) analysis, such as structure elucidation or the investigation of protein-ligand interactions. Both 1H-13C heteronuclear single quantum correlation (HSQC) and 1H-1H correlation spectroscopy (COSY) two-dimensional (2D) experiments are invaluable for 1H NMR assignment, by extending the high signal dispersion of 13C chemical shifts onto 1H resonances and by providing a high amount of through-bond 1H-1H connectivity information, respectively. The recently introduced HSQC-CLIP(Clean In-Phase)-COSY method combines these two experiments, providing COSY correlations along the high-resolution 13C dimension with clean in-phase multiplets. However, two experiments need to be recorded to unambiguously identify COSY cross-peaks. Here, we propose novel variants of the HSQC-CLIP-COSY pulse sequence that edit cross-peak signs so that direct HSQC responses can be distinguished from COSY relay peaks, and/or the multiplicities of the 13C nuclei are reflected, allowing the assignment of all the peaks in a single experiment. The advanced HSQC-CLIP-COSY variants have the potential to accelerate and simplify the NMR structure-elucidation process of both synthetic and natural products and to become valuable tools for high-throughput computer-assisted structure determination.


Asunto(s)
Imagen por Resonancia Magnética , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
16.
Beilstein J Org Chem ; 16: 818-832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395185

RESUMEN

A series of 1-substituted-3-methyl-2-phospholene oxides was prepared from the corresponding 3-phospholene oxides by double bond rearrangement. The 2-phospholene oxides could be obtained by heating the 3-phospholene oxides in methanesulfonic acid, or via the formation of cyclic chlorophosphonium salts. Whereas mixtures of the 2- and 3-phospholene oxides formed, when the isomerization of 3-phospholene oxides was attempted under thermal conditions, or in the presence of a base. The mechanisms of the various double bond migration pathways were elucidated by quantum chemical calculations.

17.
J Proteome Res ; 19(4): 1674-1683, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32073269

RESUMEN

Accurate identification of lipids in biological samples is a key step in lipidomics studies. Multidimensional nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for this purpose as it provides comprehensive structural information on lipid composition at atomic resolution. However, the interpretation of NMR spectra of complex lipid mixtures is currently hampered by limited spectral resolution and the absence of a customized lipid NMR database along with user-friendly spectral analysis tools. We introduce a new two-dimensional (2D) NMR metabolite database "COLMAR Lipids" that was specifically curated for hydrophobic metabolites presently containing 501 compounds with accurate experimental 2D 13C-1H heteronuclear single quantum coherence (HSQC) chemical shift data measured in CDCl3. A new module in the public COLMAR suite of NMR web servers was developed for the (semi)automated analysis of complex lipidomics mixtures (http://spin.ccic.osu.edu/index.php/colmarm/index2). To obtain 2D HSQC spectra with the necessary high spectral resolution along both 13C and 1H dimensions, nonuniform sampling in combination with pure shift spectroscopy was applied allowing the extraction of an abundance of unique cross-peaks belonging to hydrophobic compounds in complex lipidomics mixtures. As shown here, this information is critical for the unambiguous identification of underlying lipid molecules by means of the new COLMAR Lipids web server, also in combination with mass spectrometry, as is demonstrated for Caco-2 cell and lung tissue cell extracts.


Asunto(s)
Lipidómica , Lípidos , Células CACO-2 , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica
18.
Anal Chem ; 91(24): 15686-15693, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31718151

RESUMEN

Knowledge of the chemical identity of metabolite molecules is critical for the understanding of the complex biological systems to which they belong. Since metabolite identities and their concentrations are often directly linked to the phenotype, such information can be used to map biochemical pathways and understand their role in health and disease. A very large number of metabolites however are still unknown; i.e., their spectroscopic signatures do not match those in existing databases, suggesting unknown molecule identification is both imperative and challenging. Although metabolites are structurally highly diverse, the majority shares a rather limited number of structural motifs, which are defined by sets of 1H and 13C chemical shifts of the same spin system. This allows one to characterize unknown metabolites by a divide-and-conquer strategy that identifies their structural motifs first. Here, we present the structural motif-based approach "SUMMIT Motif" for the de novo identification of unknown molecular structures in complex mixtures, without the need for extensive purification, using NMR in tandem with two newly curated NMR molecular structural motif metabolomics databases (MSMMDBs). For the identification of structural motif(s), first, the 1H and 13C chemical shifts of all the individual spin systems are extracted from 2D and 3D NMR spectra of the complex mixture. Next, the molecular structural motifs are identified by querying these chemical shifts against the new MSMMDBs. One database, COLMAR MSMMDB, was derived from experimental NMR chemical shifts of known metabolites taken from the COLMAR metabolomics database, while the other MSMMDB, pNMR MSMMDB, is based on predicted chemical shifts of metabolites of several existing large metabolomics databases. For molecules consisting of multiple spin systems, spin systems are connected via long-range scalar J-couplings. When this motif-based identification method was applied to the hydrophilic extract of mouse bile fluid, two unknown metabolites could be successfully identified. This approach is both accurate and efficient for the identification of unknown metabolites and hence enables the discovery of new biochemical processes and potential biomarkers.


Asunto(s)
Bilis/metabolismo , Biomarcadores/metabolismo , Mezclas Complejas/metabolismo , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Animales , Biomarcadores/análisis , Mezclas Complejas/análisis , Bases de Datos Factuales , Ratones
19.
J Chem Inf Model ; 59(11): 4855-4867, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31593467

RESUMEN

Computational description of conformational and dynamic properties of anticoagulant heparin analogue pentasaccharides is of crucial importance in understanding their biological activities. We designed and synthesized idraparinux derivatives modified with sulfonatomethyl moieties at the D, F, and H glucose units that display varied potencies depending on the exact nature of the substitution. In this report we examined the capability of molecular dynamics (MD) simulations to describe the conformational behavior of these novel idraparinux derivatives. We used Gaussian accelerated MD (GAMD) simulations on the parent compound, idraparinux, to choose the most suitable carbohydrate force field for these type of compounds. GAMD provided significant acceleration of conformational transitions compared to classical MD. We compared descriptors obtained from GAMD with NMR spectroscopic parameters related to geometrical descriptors such as scalar couplings and nuclear Overhauser effects (NOE) measured on idraparinux. We found that the experimental data of idraparinux is best reproduced by the CHARMM carbohydrate force field. Furthermore, we propose a torsion angle parameter for the sulfonato-methyl group, which was developed for the chosen CHARMM force field using quantum chemical calculations and validated by comparison with NMR data. The work lays down the foundation of using MD simulations to gain insight into the conformational properties of sulfonato-methyl group modified idraparinux derivatives and to understand their structure-activity relationship thus enabling rational design of further modifications.


Asunto(s)
Inhibidores del Factor Xa/química , Heparina/análogos & derivados , Simulación de Dinámica Molecular , Oligosacáridos/química , Diseño de Fármacos , Glucosa/análogos & derivados , Metilación , Distribución Normal
20.
Chembiochem ; 20(13): 1688-1692, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30828921

RESUMEN

The fundamental importance of protein-glycan recognition calls for specific and sensitive high-resolution techniques for their detailed analysis. After the introduction of 19 F NMR spectroscopy to study the recognition of fluorinated glycans, a new 77 Se NMR spectroscopy method is presented for complementary studies of selenoglycans with optimised resolution and sensitivity, in which direct NMR spectroscopy detection on 77 Se is replaced by its indirect observation in a 2D 1 H,77 Se HSQMBC spectrum. In contrast to OH/F substitution, O/Se exchange allows the glycosidic bond to be targeted. As an example, selenodigalactoside recognition by three human galectins and a plant toxin is readily indicated by signal attenuation and line broadening in the 2D 1 H,77 Se HSQMBC spectrum, in which CPMG-INEPT long-range transfer ensures maximal detection sensitivity, clean signal phases, and reliable ligand ranking. By monitoring competitive displacement of a selenated spy ligand, the selective 77 Se NMR spectroscopy approach may also be used to screen non-selenated compounds. Finally, 1 H,77 Se CPMG-INEPT transfer allows further NMR sensors of molecular interaction to be combined with the specificity and resolution of 77 Se NMR spectroscopy.


Asunto(s)
Galectinas/metabolismo , Glicósidos/metabolismo , Compuestos de Organoselenio/metabolismo , Aglutininas/metabolismo , Glicósidos/química , Humanos , Isótopos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Compuestos de Organoselenio/química , Selenio , Viscum album/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA