Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 187(5): 1101-1102, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428390
2.
Adv Genet (Hoboken) ; 4(2): 2200024, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37288167

RESUMEN

Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.

4.
Eur J Heart Fail ; 24(6): 1009-1019, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570197

RESUMEN

AIMS: Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF. METHODS AND RESULTS: Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF. CONCLUSION: Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Biomarcadores , Enfermedad Crónica , Humanos , Pronóstico , Transcriptoma
5.
J Alzheimers Dis ; 86(1): 173-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35034905

RESUMEN

BACKGROUND: Alzheimer's disease (AD) has minimally effective treatments currently. High concentrations of resveratrol, a polyphenol antioxidant found in plants, have been reported to affect several AD-related and neuroprotective genes. To address the low bioavailability of resveratrol, we investigated a novel oral formulation of resveratrol, JOTROL™, that has shown increased pharmacokinetic properties compared to non-formulated resveratrol in animals and in humans. OBJECTIVE: We hypothesized that equivalent doses of JOTROL, compared to non-formulated resveratrol, would result in greater brain exposure to resveratrol, and more efficacious responses on AD biomarkers. METHODS: For sub-chronic reversal studies, 15-month-old male triple transgenic (APPSW/PS1M146V/TauP301L; 3xTg-AD) AD mice were treated orally with vehicle or 50 mg/kg JOTROL for 36 days. For prophylactic studies, male and female 3xTg-AD mice were similarly administered vehicle, 50 mg/kg JOTROL, or 50 mg/kg resveratrol for 9 months starting at 4 months of age. A behavioral battery was run, and mRNA and protein from brain and blood were analyzed for changes in AD-related gene and protein expression. RESULTS: JOTROL displays significantly increased bioavailability over non-formulated resveratrol. Treatment with JOTROL resulted in AD-related gene expression changes (Adam10, Bace1, Bdnf, Psen1) some of which were brain region-dependent and sex-specific, as well as changes in inflammatory gene and cytokine levels. CONCLUSION: JOTROL may be effective as a prophylaxis and/or treatment for AD through increased expression and/or activation of neuroprotective genes, suppression of pro-inflammatory genes, and regulation of central and peripheral cytokine levels.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Resveratrol , Proteínas tau/metabolismo
6.
Elife ; 112022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35037854

RESUMEN

Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug target specificity; an observation supported by deep learning-based genome-wide predicted pharmacology. Several drugs identified are suitable for evaluation in patients, particularly those with either acute or severe chronic IR.


Developing a new drug that is both safe and effective is a complex and expensive endeavor. An alternative approach is to 'repurpose' existing, safe compounds ­ that is, to establish if they could treat conditions others than the ones they were initially designed for. To achieve this, methods that can predict the activity of thousands of established drugs are necessary. These approaches are particularly important for conditions for which it is hard to find promising treatment. This includes, for instance, heart failure, dementia and other diseases that are linked to the activity of the hormone insulin becoming modified throughout the body, a defect called insulin resistance. Unfortunately, it is difficult to model the complex actions of insulin using cells in the lab, because they involve intricate networks of proteins, tissues and metabolites. Timmons et al. set out to develop a way to better assess whether a drug could be repurposed to treat insulin resistance. The aim was to build a biological signature of the disease in multiple human tissues, as this would help to make the findings more relevant to the clinic. This involved examining which genes were switched on or off in thousands of tissue samples from patients with different degrees of insulin resistance. Importantly, some of the patients had their condition reversed through lifestyle changes, while others did not respond well to treatment. These 'non-responders' provided crucial new clues to screen for active drugs. Carefully piecing the data together revealed the molecules and pathways most related to the severity of insulin resistance. Cross-referencing these results with the way existing drugs act on gene activity, highlighted 138 compounds that directly bind 73 proteins responsible for regulating insulin resistance pathways. Some of the drugs identified are suitable for short-term clinical studies, and it may even be possible to rank similar compounds based on their chemical activity. Beyond giving a glimpse into the complex molecular mechanisms of insulin resistance in humans, Timmons et al. provide a fresh approach to how drugs could be repurposed, which could be adapted to other conditions.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Metabólicas/tratamiento farmacológico , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Humanos , Resistencia a la Insulina , Enfermedades Metabólicas/genética , Músculos/metabolismo , Transcriptoma
7.
FASEB J ; 36(1): e22088, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921686

RESUMEN

Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.


Asunto(s)
Antígenos CD/biosíntesis , Regulación hacia Abajo , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , ARN Mensajero/biosíntesis , Receptor de Insulina/biosíntesis , Animales , Antígenos CD/genética , Línea Celular , Humanos , Hiperinsulinismo/genética , Ratones , Ratones Noqueados , ARN Mensajero/genética , RNA-Seq , Receptor de Insulina/genética
8.
Cell Rep ; 32(5): 107980, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755574

RESUMEN

Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.


Asunto(s)
Músculo Esquelético/fisiología , Adolescente , Adulto , Ejercicio Físico , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Tamaño de los Órganos , Biosíntesis de Proteínas , Proteoma/metabolismo , ARN/metabolismo , Transducción de Señal , Soporte de Peso , Adulto Joven
9.
Nat Commun ; 10(1): 5799, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862872

RESUMEN

Single-strand breaks (SSBs) represent the major form of DNA damage, yet techniques to map these lesions genome-wide with nucleotide-level precision are limited. Here, we present a method, termed SSiNGLe, and demonstrate its utility to explore the distribution and dynamic changes in genome-wide SSBs in response to different biological and environmental stimuli. We validate SSiNGLe using two very distinct sequencing techniques and apply it to derive global profiles of SSBs in different biological states. Strikingly, we show that patterns of SSBs in the genome are non-random, specific to different biological states, enriched in regulatory elements, exons, introns, specific types of repeats and exhibit differential preference for the template strand between exons and introns. Furthermore, we show that breaks likely contribute to naturally occurring sequence variants. Finally, we demonstrate strong links between SSB patterns and age. Overall, SSiNGLe provides access to unexplored realms of cellular biology, not obtainable with current approaches.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN de Cadena Simple/genética , Genoma Humano/genética , Genómica/métodos , Nucleótidos/genética , Animales , Senescencia Celular/genética , Exones/genética , Células HeLa , Humanos , Intrones/genética , Células K562 , Ratones , Nucleótidos/aislamiento & purificación , Programas Informáticos
10.
Genome Biol ; 20(1): 152, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375147

RESUMEN

Jacob and Speed did not identify even a single example of a '150-gene-set' that was statistically significant at classifying Alzheimer's disease (AD) samples, or age in independent studies. We attempt to clarify the various misunderstandings, below.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Saludable , Cognición , Estado de Salud , Humanos , ARN
11.
Aging Cell ; 18(4): e12970, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31168962

RESUMEN

Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Longevidad/genética , ARN Largo no Codificante/genética , Transcriptoma , Adulto , Corteza Cerebral/metabolismo , Redes Reguladoras de Genes , Humanos , Fibras Musculares Esqueléticas/metabolismo , Neuronas/metabolismo , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Activación Transcripcional/efectos de los fármacos , Gemelos Monocigóticos/genética
12.
Nucleic Acids Res ; 46(15): 7772-7792, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986096

RESUMEN

Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Genómica , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Insulina/metabolismo , Enfermedades Metabólicas/genética , Modelos Moleculares , Fosforilación Oxidativa , Sitios de Carácter Cuantitativo , ARN/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-28943861

RESUMEN

INTRODUCTION: Regular physical activity (PA) can reduce the risk of developing type 2 diabetes, but adherence to time-orientated (150 min week-1 or more) PA guidelines is very poor. A practical and time-efficient PA regime that was equally efficacious at controlling risk factors for cardio-metabolic disease is one solution to this problem. Herein, we evaluate a new time-efficient and genuinely practical high-intensity interval training (HIT) protocol in men and women with pre-existing risk factors for type 2 diabetes. MATERIALS AND METHODS: One hundred eighty-nine sedentary women (n = 101) and men (n = 88) with impaired glucose tolerance and/or a body mass index >27 kg m-2 [mean (range) age: 36 (18-53) years] participated in this multi-center study. Each completed a fully supervised 6-week HIT protocol at work-loads equivalent to ~100 or ~125% [Formula: see text]. Change in [Formula: see text] was used to monitor protocol efficacy, while Actiheart™ monitors were used to determine PA during four, weeklong, periods. Mean arterial (blood) pressure (MAP) and fasting insulin resistance [homeostatic model assessment (HOMA)-IR] represent key health biomarker outcomes. RESULTS: The higher intensity bouts (~125% [Formula: see text]) used during a 5-by-1 min HIT protocol resulted in a robust increase in [Formula: see text] (136 participants, +10.0%, p < 0.001; large size effect). 5-by-1 HIT reduced MAP (~3%; p < 0.001) and HOMA-IR (~16%; p < 0.01). Physiological responses were similar in men and women while a sizeable proportion of the training-induced changes in [Formula: see text], MAP, and HOMA-IR was retained 3 weeks after cessation of training. The supervised HIT sessions accounted for the entire quantifiable increase in PA, and this equated to 400 metabolic equivalent (MET) min week-1. Meta-analysis indicated that 5-by-1 HIT matched the efficacy and variability of a time-consuming 30-week PA program on [Formula: see text], MAP, and HOMA-IR. CONCLUSION: With a total time-commitment of <15 min per session and reliance on a practical ergometer protocol, 5-by-1 HIT offers a new solution to modulate cardio-metabolic risk factors in adults with pre-existing risk factors for type 2 diabetes while approximately meeting the MET min week-1 PA guidelines. Long-term randomized controlled studies will be required to quantify the ability for 5-by-1 HIT to reduce the incidence of type 2 diabetes, while strategies are required to harmonize the adaptations to exercise across individuals.

14.
FASEB J ; 31(12): 5196-5207, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28774889

RESUMEN

Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P < 0.001) and total RNA content (-16 ± 2% vs. IGF-1; P < 0.001) in IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P < 0.05 vs. control) and total protein (+20 ± 2%; P < 0.001 vs. control) were not prevented by CX treatment. Suppression of rRNA synthesis during IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P < 0.001) and p70 S6K1 (269 ± 41% vs. CX; P < 0.001) phosphorylation. Despite robust inhibition of the dynamic ribosomal biogenesis response to IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro.-Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.


Asunto(s)
Hipertrofia/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Benzotiazoles/farmacología , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Naftiridinas/farmacología , Fosforilación/efectos de los fármacos , ARN Mensajero/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
F1000Res ; 6: 286, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620456

RESUMEN

Background: Exercise may activate a brown adipose-like phenotype in white adipose tissue. The aim of this systematic review was to identify the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) and fibronectin type III domain-containing protein 5 (FNDC5) in muscle, circulating Irisin and uncoupling protein one (UCP1) of white adipocytes in humans. Methods: Two databases (PubMed 1966 to 08/2016 and EMBASE 1974 to 08/2016) were searched using an appropriate algorithm. We included articles that examined physical activity and/or exercise in humans that met the following criteria: a) PGC-1a in conjunction with FNDC5 measurements, and b) FNDC5 and/or circulating Irisin and/or UCP1 levels in white adipocytes. Results: We included 51 studies (12 randomised controlled trials) with 2474 participants. Out of the 51 studies, 16 examined PGC-1a and FNDC5 in response to exercise, and only four found increases in both PGC-1a and FNDC5 mRNA and one showed increased FNDC5 mRNA. In total, 22 out of 45 studies that examined circulating Irisin in response to exercise showed increased concentrations when ELISA techniques were used; two studies also revealed increased Irisin levels measured via mass spectrometry. Three studies showed a positive association of circulating Irisin with physical activity levels. One study found no exercise effects on UCP1 mRNA in white adipocytes. Conclusions: The effects of physical activity on the link between PGC-1a, FNDC5 mRNA in muscle and UCP1 in white human adipocytes has attracted little scientific attention. Current methods for Irisin identification lack precision and, therefore, the existing evidence does not allow for conclusions to be made regarding Irisin responses to physical activity. We found a contrast between standardised review methods and accuracy of the measurements used. This should be considered in future systematic reviews.

16.
Trends Pharmacol Sci ; 38(1): 67-80, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979318

RESUMEN

As average life expectancy increases there is a greater focus on health-span and, in particular, how to treat or prevent chronic age-associated diseases. Therapies which were able to control 'biological age' with the aim of postponing chronic and costly diseases of old age require an entirely new approach to drug development. Molecular technologies and machine-learning methods have already yielded diagnostics that help guide cancer treatment and cardiovascular procedures. Discovery of valid and clinically informative diagnostics of human biological age (combined with disease-specific biomarkers) has the potential to alter current drug-discovery strategies, aid clinical trial recruitment and maximize healthy ageing. I will review some basic principles that govern the development of 'ageing' diagnostics, how such assays could be used during the drug-discovery or development process. Important logistical and statistical considerations are illustrated by reviewing recent biomarker activity in the field of Alzheimer's disease, as dementia represents the most pressing of priorities for the pharmaceutical industry, as well as the chronic disease in humans most associated with age.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/diagnóstico , Patología Molecular/métodos , Metilación de ADN , Descubrimiento de Drogas , Industria Farmacéutica , Humanos
17.
FASEB J ; 31(1): 96-108, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27698205

RESUMEN

We recently developed a binary (i.e., young vs. old) classifier using human muscle RNA profiles that accurately distinguished the age of multiple tissue types. Pathway analysis did not reveal regulators of these 150 genes, so we used reverse genetics and pharmacologic methods to explore regulation of gene expression. Using small interfering RNA, well-studied age-related factors (i.e., rapamycin, resveratrol, TNF-α, and staurosporine), quantitative real-time PCR and clustering analysis, we studied gene-gene interactions in human skeletal muscle and renal epithelial cells. Individual knockdown of 10 different age genes yielded a consistent pattern of gene expression in muscle and renal cells, similar to in vivo. Potential epigenetic interactions included HIST1H3E knockdown, leading to decreased PHF19 and PCDH9, and increased ICAM5 in muscle and renal cells, while ICAM5 knockdown reduced HIST1H3E expression. Resveratrol, staurosporine, and TNF-α significantly regulated the in vivo aging genes, while only rapamycin perturbed the healthy-age gene expression signature in a manner consistent with in vivo. In vitro coordination of gene expression for this in vivo tissue age signature indicates a degree of direct coordination, and the observed link with mTOR activity suggests a direct link between a robust biomarker of healthy neuromuscular age and a major axis of life span in model systems.-Crossland, H., Atherton, P. J., Strömberg, A., Gustafsson, T., Timmons, J. A. A reverse genetics cell-based evaluation of genes linked to healthy human tissue age.


Asunto(s)
Envejecimiento/fisiología , Regulación de la Expresión Génica/fisiología , Riñón/metabolismo , Músculo Esquelético/metabolismo , ARN/metabolismo , Transcriptoma/fisiología , Humanos , ARN/genética , Interferencia de ARN , ARN Interferente Pequeño
18.
Am J Clin Nutr ; 104(3): 557-65, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27488235

RESUMEN

BACKGROUND: A hypothesis exists whereby an exercise- or dietary-induced negative energy balance reduces human subcutaneous white adipose tissue (scWAT) mass through the formation of brown-like adipocyte (brite) cells. However, the validity of biomarkers of brite formation has not been robustly evaluated in humans, and clinical data that link brite formation and weight loss are sparse. OBJECTIVES: We used rosiglitazone and primary adipocytes to stringently evaluate a set of biomarkers for brite formation and determined whether the expression of biomarker genes in scWAT could explain the change in body composition in response to exercise training combined with calorie restriction in obese and overweight women (n = 79). DESIGN: Gene expression was derived from exon DNA microarrays and preadipocytes from obesity-resistant and -sensitive mice treated with rosiglitazone to generate candidate brite biomarkers from a microarray. These biomarkers were evaluated against data derived from scWAT RNA from obese and overweight women before and after supervised exercise 5 d/wk for 16 wk combined with modest calorie restriction (∼0.84 MJ/d). RESULTS: Forty percent of commonly used brite gene biomarkers exhibited an exon or strain-specific regulation. No biomarkers were positively related to weight loss in human scWAT. Greater weight loss was significantly associated with less uncoupling protein 1 expression (P = 0.006, R(2) = 0.09). In a follow-up global analysis, there were 161 genes that covaried with weight loss that were linked to greater CCAAT/enhancer binding protein α activity (z = 2.0, P = 6.6 × 10(-7)), liver X receptor α/ß agonism (z = 2.1, P = 2.8 × 10(-7)), and inhibition of leptin-like signaling (z = -2.6, P = 3.9 × 10(-5)). CONCLUSION: We identify a subset of robust RNA biomarkers for brite formation and show that calorie-restriction-mediated weight loss in women dynamically remodels scWAT to take on a more-white rather than a more-brown adipocyte phenotype.


Asunto(s)
Tejido Adiposo Beige/patología , Dieta Reductora , Ejercicio Físico , Regulación de la Expresión Génica , Sobrepeso/patología , ARN Mensajero/metabolismo , Grasa Subcutánea/patología , Adipocitos Beige/citología , Adipocitos Beige/efectos de los fármacos , Adipocitos Beige/metabolismo , Adipocitos Beige/patología , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Tejido Adiposo Beige/metabolismo , Adulto , Animales , Biomarcadores/metabolismo , Células Cultivadas , Terapia Combinada , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Sobrepeso/dietoterapia , Sobrepeso/metabolismo , Sobrepeso/terapia , Grasa Subcutánea/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Pérdida de Peso
19.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-27303646

RESUMEN

The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to 'skeletal muscle, exercise, and ageing' with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely 'size effect' of a potential mechanism on physiological capacity or ageing.

20.
J Cachexia Sarcopenia Muscle ; 7(5): 604-614, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27239416

RESUMEN

BACKGROUND: The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre-)frail older adults. Additionally, we examine the effect of resistance-type exercise training on the muscle transcriptome in healthy older subjects and (pre-)frail older adults. METHODS: Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow-up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance-type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. RESULTS: At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism ,and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = -0.73). CONCLUSIONS: Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance-type exercise training. Some age-related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance-type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re-innervation in ageing muscle.


Asunto(s)
Envejecimiento/genética , Cadherinas/genética , Expresión Génica , Debilidad Muscular/genética , Músculo Esquelético/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Biopsia , Proteínas Relacionadas con las Cadherinas , Cadherinas/metabolismo , Ejercicio Físico , Femenino , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Modelos Biológicos , Fuerza Muscular/genética , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Entrenamiento de Fuerza , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA