Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Science ; 385(6708): adl2362, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088608

RESUMEN

In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Océanos y Mares , Tiburones , Animales , Humanos , Secuestro de Carbono , Cambio Climático , Cadena Alimentaria , Actividades Humanas , Conducta Predatoria , Tiburones/fisiología
2.
Science ; 384(6697): 798-802, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753790

RESUMEN

Although tool use may enhance resource utilization, its fitness benefits are difficult to measure. By examining longitudinal data from 196 radio-tagged southern sea otters (Enhydra lutris nereis), we found that tool-using individuals, particularly females, gained access to larger and/or harder-shelled prey. These mechanical advantages translated to reduced tooth damage during food processing. We also found that tool use diminishes trade-offs between access to different prey, tooth condition, and energy intake, all of which are dependent on the relative prey availability in the environment. Tool use allowed individuals to maintain energetic requirements through the processing of alternative prey that are typically inaccessible with biting alone, suggesting that this behavior is a necessity for the survival of some otters in environments where preferred prey are depleted.


Asunto(s)
Nutrias , Conducta Predatoria , Comportamiento del Uso de la Herramienta , Diente , Animales , Femenino , Masculino , Ingestión de Energía , Conducta Alimentaria , Nutrias/fisiología
3.
Nature ; 626(7997): 111-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297171

RESUMEN

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Asunto(s)
Braquiuros , Estuarios , Nutrias , Conducta Predatoria , Erosión del Suelo , Humedales , Animales , Biomasa , Braquiuros/fisiología , Nutrias/fisiología , Estados Unidos , Plantas , Elevación del Nivel del Mar , Olas de Marea , Nutrientes/metabolismo , Cadena Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA