Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 15(1): 4198, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760344

RESUMEN

During HIV infection, specific RNA-protein interaction between the Rev response element (RRE) and viral Rev protein is required for nuclear export of intron-containing viral mRNA transcripts. Rev initially binds the high-affinity site in stem-loop II, which promotes oligomerization of additional Rev proteins on RRE. Here, we present the crystal structure of RRE stem-loop II in distinct closed and open conformations. The high-affinity Rev-binding site is located within the three-way junction rather than the predicted stem IIB. The closed and open conformers differ in their non-canonical interactions within the three-way junction, and only the open conformation has the widened major groove conducive to initial Rev interaction. Rev binding assays show that RRE stem-loop II has high- and low-affinity binding sites, each of which binds a Rev dimer. We propose a binding model, wherein Rev-binding sites on RRE are sequentially created through structural rearrangements induced by Rev-RRE interactions.


Asunto(s)
Genes env , VIH-1 , VIH-1/química , VIH-1/genética , Conformación de Ácido Nucleico , Secuencia de Bases , ARN Viral/química , Motivos de Nucleótidos , Infecciones por VIH/virología , Humanos
2.
RNA ; 30(6): 609-623, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38383158

RESUMEN

Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.


Asunto(s)
Conformación de Ácido Nucleico , ARN Viral , Bibliotecas de Moléculas Pequeñas , Virus Zika , Virus Zika/genética , Virus Zika/efectos de los fármacos , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Antivirales/farmacología , Antivirales/química , Cristalografía por Rayos X , Modelos Moleculares , Regiones Promotoras Genéticas
3.
Nucleic Acids Res ; 51(16): 8850-8863, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486760

RESUMEN

The genomes of positive-strand RNA viruses serve as a template for both protein translation and genome replication. In enteroviruses, a cloverleaf RNA structure at the 5' end of the genome functions as a switch to transition from viral translation to replication by interacting with host poly(C)-binding protein 2 (PCBP2) and the viral 3CDpro protein. We determined the structures of cloverleaf RNA from coxsackievirus and poliovirus. Cloverleaf RNA folds into an H-type four-way junction and is stabilized by a unique adenosine-cytidine-uridine (A•C-U) base triple involving the conserved pyrimidine mismatch region. The two PCBP2 binding sites are spatially proximal and are located on the opposite end from the 3CDpro binding site on cloverleaf. We determined that the A•C-U base triple restricts the flexibility of the cloverleaf stem-loops resulting in partial occlusion of the PCBP2 binding site, and elimination of the A•C-U base triple increases the binding affinity of PCBP2 to the cloverleaf RNA. Based on the cloverleaf structures and biophysical assays, we propose a new mechanistic model by which enteroviruses use the cloverleaf structure as a molecular switch to transition from viral protein translation to genome replication.


Asunto(s)
Enterovirus , Genoma Viral , Poliovirus , ARN Viral , Humanos , Enterovirus/genética , Enterovirus/fisiología , Células HeLa , Conformación de Ácido Nucleico , Poliovirus/genética , Poliovirus/fisiología , Biosíntesis de Proteínas , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
4.
Neuropsychopharmacology ; 46(3): 673-682, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288841

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) allow for the establishment of brain cellular models of psychiatric disorders that account for a patient's genetic background. Here, we conducted an RNA-sequencing profiling study of hiPSC-derived cell lines from schizophrenia (SCZ) subjects, most of which are from a multiplex family, from the population isolate of the Central Valley of Costa Rica. hiPSCs, neural precursor cells, and cortical neurons derived from six healthy controls and seven SCZ subjects were generated using standard methodology. Transcriptome from these cells was obtained using Illumina HiSeq 2500, and differential expression analyses were performed using DESeq2 (|fold change|>1.5 and false discovery rate < 0.3), in patients compared to controls. We identified 454 differentially expressed genes in hiPSC-derived neurons, enriched in pathways including phosphoinositide 3-kinase/glycogen synthase kinase 3 (PI3K/GSK3) signaling, with serum-glucocorticoid kinase 1 (SGK1), an inhibitor of glycogen synthase kinase 3ß, as part of this pathway. We further found that pharmacological inhibition of downstream effectors of the PI3K/GSK3 pathway, SGK1 and GSK3, induced alterations in levels of neurite markers ßIII tubulin and fibroblast growth factor 12, with differential effects in patients compared to controls. While demonstrating the utility of hiPSCs derived from multiplex families to identify significant cell-specific gene network alterations in SCZ, these studies support a role for disruption of PI3K/GSK3 signaling as a risk factor for SCZ.


Asunto(s)
Células-Madre Neurales , Esquizofrenia , Genómica , Glucógeno Sintasa Quinasa 3/genética , Humanos , Neuronas , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA