Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17090, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273483

RESUMEN

Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.


Asunto(s)
Diatomeas , Ácidos Grasos Omega-3 , Humanos , Cubierta de Hielo , Océanos y Mares , Regiones Árticas , Ácidos Grasos
2.
Sci Adv ; 8(7): eabj7536, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179965

RESUMEN

The retreating ice cover of the Central Arctic Ocean (CAO) fuels speculations on future fisheries. However, very little is known about the existence of harvestable fish stocks in this 3.3 million-square kilometer ecosystem around the North Pole. Crossing the Eurasian Basin, we documented an uninterrupted 3170-kilometer-long deep scattering layer (DSL) with zooplankton and small fish in the Atlantic water layer at 100- to 500-meter depth. Diel vertical migration of this central Arctic DSL was lacking most of the year when daily light variation was absent. Unexpectedly, the DSL also contained low abundances of Atlantic cod, along with lanternfish, armhook squid, and Arctic endemic ice cod. The Atlantic cod originated from Norwegian spawning grounds and had lived in Arctic water temperature for up to 6 years. The potential fish abundance was far below commercially sustainable levels and is expected to remain so because of the low productivity of the CAO.

3.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35030328

RESUMEN

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Asunto(s)
Phocidae , Animales , Regiones Antárticas , Peces , Cadena Alimentaria , Agua
4.
Rev Sci Instrum ; 82(7): 073106, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21806171

RESUMEN

We report on a new design of a vacuum ultra violet (VUV) lamp for direct optical excitation of high laying atomic states, e.g., for excitation of metastable rare gas atoms. The lamp can be directly mounted to ultra-high vacuum vessels (p ≤ 10(-10)mbar). It is driven by a 2.45 GHz microwave source. For optimum operation, it requires powers of ~20 W. The VUV light is transmitted through a magnesium fluoride window, which is known to have a decreasing transmittance for VUV photons with time. In our special setup, after a run-time of the VUV lamp of 550 h the detected signal continuously decreased to 25% of its initial value. This corresponds to a lifetime increase of two orders of magnitude compared to previous setups or commercial lamps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA