Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Brain Behav Immun ; 122: 231-240, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153518

RESUMEN

BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.

2.
J Alzheimers Dis ; 100(s1): S187-S196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121124

RESUMEN

Background: Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegenerative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and Progranulin (GRN) genes are not well understood. Objective: This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected within the GENetic Frontotemporal dementia Initiative (GENFI). Methods: Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72, MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC), compared with 40 non-carrier controls (NC). Results: Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC. MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did not correlate with lncRNA expression. Conclusions: NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC, underlining lncRNAs' relevance in FTD and their potential for biomarker development. Further validation and mechanistic studies are crucial for clinical implications.


Asunto(s)
Proteína C9orf72 , Demencia Frontotemporal , Progranulinas , ARN Largo no Codificante , Proteínas tau , Humanos , Demencia Frontotemporal/genética , ARN Largo no Codificante/genética , Femenino , Masculino , Persona de Mediana Edad , Proteína C9orf72/genética , Progranulinas/genética , Proteínas tau/genética , Anciano , Mutación , Biomarcadores/sangre
3.
Brain Commun ; 6(4): fcae185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015769

RESUMEN

The glymphatic system is an emerging target in neurodegenerative disorders. Here, we investigated the activity of the glymphatic system in genetic frontotemporal dementia with a diffusion-based technique called diffusion tensor image analysis along the perivascular space. We investigated 291 subjects with symptomatic or presymptomatic frontotemporal dementia (112 with chromosome 9 open reading frame 72 [C9orf72] expansion, 119 with granulin [GRN] mutations and 60 with microtubule-associated protein tau [MAPT] mutations) and 83 non-carriers (including 50 young and 33 old non-carriers). We computed the diffusion tensor image analysis along the perivascular space index by calculating diffusivities in the x-, y- and z-axes of the plane of the lateral ventricle body. Clinical stage and blood-based markers were considered. A subset of 180 participants underwent cognitive follow-ups for a total of 640 evaluations. The diffusion tensor image analysis along the perivascular space index was lower in symptomatic frontotemporal dementia (estimated marginal mean ± standard error, 1.21 ± 0.02) than in old non-carriers (1.29 ± 0.03, P = 0.009) and presymptomatic mutation carriers (1.30 ± 0.01, P < 0.001). In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity (ß = -1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image analysis along the perivascular space and higher plasma neurofilament light chain was reported (ß = -0.28, P = 0.063). Analysis of longitudinal data demonstrated that worsening of disease severity was faster in patients with low diffusion tensor image analysis along the perivascular space at baseline than in those with average (P = 0.009) or high (P = 0.006) diffusion tensor image analysis along the perivascular space index. Using a non-invasive imaging approach as a proxy for glymphatic system function, we demonstrated glymphatic system abnormalities in the symptomatic stages of genetic frontotemporal dementia. Such measures of the glymphatic system may elucidate pathophysiological processes in human frontotemporal dementia and facilitate early phase trials of genetic frontotemporal dementia.

4.
Alzheimers Res Ther ; 16(1): 98, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704608

RESUMEN

BACKGROUND: The identification and staging of Alzheimer's Disease (AD) represent a challenge, especially in the prodromal stage of Mild Cognitive Impairment (MCI), when cognitive changes can be subtle. Worldwide efforts were dedicated to select and harmonize available neuropsychological instruments. In Italy, the Italian Network of Neuroscience and Neuro-Rehabilitation has promoted the adaptation of the Uniform Data Set Neuropsychological Test Battery (I-UDSNB), collecting normative data from 433 healthy controls (HC). Here, we aimed to explore the ability of I-UDSNB to differentiate between a) MCI and HC, b) AD and HC, c) MCI and AD. METHODS: One hundred thirty-seven patients (65 MCI, 72 AD) diagnosed after clinical-neuropsychological assessment, and 137 HC were included. We compared the I-UDSNB scores between a) MCI and HC, b) AD and HC, c) MCI and AD, with t-tests. To identify the test(s) most capable of differentiating between groups, significant scores were entered in binary logistic and in stepwise regressions, and then in Receiver Operating Characteristic curve analyses. RESULTS: Two episodic memory tests (Craft Story and Five Words test) differentiated MCI from HC subjects; Five Words test, Semantic Fluency (vegetables), and TMT-part B differentiated AD from, respectively, HC and MCI. CONCLUSIONS: Our findings indicate that the I-UDSNB is a suitable tool for the harmonized and concise assessment of patients with cognitive decline, showing high sensitivity and specificity for the diagnosis of MCI and AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Pruebas Neuropsicológicas , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Femenino , Masculino , Pruebas Neuropsicológicas/normas , Anciano , Italia , Persona de Mediana Edad , Reproducibilidad de los Resultados , Anciano de 80 o más Años
5.
Alzheimers Dement ; 20(5): 3525-3542, 2024 05.
Artículo en Italiano | MEDLINE | ID: mdl-38623902

RESUMEN

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Asunto(s)
Proteína C9orf72 , Circulación Cerebrovascular , Demencia Frontotemporal , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/genética , Proteína C9orf72/genética , Proteínas tau/genética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Progranulinas/genética , Biomarcadores , Progresión de la Enfermedad , Encéfalo/diagnóstico por imagen , Heterocigoto , Mutación , Anciano , Marcadores de Spin , Adulto
6.
Alzheimers Dement (Amst) ; 16(2): e12571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623386

RESUMEN

INTRODUCTION: We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS: Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS: The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION: Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights: The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS).No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale.Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains.A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.

7.
J Neurol Neurosurg Psychiatry ; 95(9): 822-828, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38253362

RESUMEN

BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.


Asunto(s)
Biomarcadores , Demencia Frontotemporal , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/sangre , Reproducibilidad de los Resultados , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Proteínas tau/genética , Proteínas tau/sangre , Proteína C9orf72/genética , Progranulinas/genética , Anciano , Mutación , Estudios de Cohortes
9.
Alzheimers Res Ther ; 16(1): 10, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216961

RESUMEN

BACKGROUND: The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS: A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS: The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS: The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Proteínas de Neurofilamentos , Biomarcadores , Atrofia
10.
Alzheimers Dement (Amst) ; 15(4): e12515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145190

RESUMEN

INTRODUCTION: 18F-Fluoro-deoxyglucose-positron emission tomography (FDG-PET) is a supportive biomarker in dementia with Lewy bodies (DLB) diagnosis and its advanced analysis methods, including radiomics and machine learning (ML), were developed recently. The aim of this study was to evaluate the FDG-PET diagnostic performance in predicting a DLB versus Alzheimer's disease (AD) diagnosis. METHODS: FDG-PET scans were visually and semi-quantitatively analyzed in 61 patients. Radiomics and ML analyses were performed, building five ML models: (1) clinical features; (2) visual and semi-quantitative PET features; (3) radiomic features; (4) all PET features; and (5) overall features. RESULTS: At follow-up, 34 patients had DLB and 27 had AD. At visual analysis, DLB PET signs were significantly more frequent in DLB, having the highest diagnostic accuracy (86.9%). At semi-quantitative analysis, the right precuneus, superior parietal, lateral occipital, and primary visual cortices showed significantly reduced uptake in DLB. The ML model 2 had the highest diagnostic accuracy (84.3%). DISCUSSION: FDG-PET is a valuable tool in DLB diagnosis, having visual and semi-quantitative analyses with the highest diagnostic accuracy at ML analyses.

11.
Alzheimers Dement (Amst) ; 15(4): e12462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026754

RESUMEN

INTRODUCTION: Dementia with Lewy bodies (DLB) is typically characterized by parietal, temporal, and occipital atrophy, but less is known about the newly defined prodromal phases. The objective of this study was to evaluate structural brain alterations in prodromal DLB (p-DLB) as compared to healthy controls (HC) and full-blown dementia (DLB-DEM). METHODS: The study included 42 DLB patients (n = 20 p-DLB; n = 22 DLB-DEM) and 27 HC with a standardized neurological assessment and 3-tesla magnetic resonance imaging. Voxel-wise analyses on gray-matter and cortical thickness were implemented to evaluate differences between p-DLB, DLB-DEM, and HC. RESULTS: p-DLB and DLB-DEM exhibited reduced occipital and posterior parieto-temporal volume and thickness, extending from prodromal to dementia stages. Occipital atrophy was more sensitive than insular atrophy in differentiating p-DLB and HC. Occipital atrophy correlated to frontotemporal structural damage increasing from p-DLB to DLB-DEM. DISCUSSION: Occipital and posterior-temporal structural alterations are an early signature of the DLB continuum and correlate with a long-distance pattern of atrophy.

12.
Sci Rep ; 13(1): 17355, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833302

RESUMEN

Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Humanos , Diagnóstico Diferencial , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Biomarcadores , Aprendizaje Automático , Algoritmos
13.
Transl Neurodegener ; 12(1): 35, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438825

RESUMEN

BACKGROUND: The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis. METHODS: Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS). RESULTS: The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aß oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD. CONCLUSIONS: Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Espectrometría Raman , Enfermedad de Alzheimer/diagnóstico , Aprendizaje Automático , Semillas
14.
J Neurol Sci ; 451: 120711, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348248

RESUMEN

OBJECTIVE: To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. METHODS: 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. RESULTS: 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. CONCLUSIONS: Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials.


Asunto(s)
Demencia Frontotemporal , Trastornos del Desarrollo del Lenguaje , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Progranulinas/genética , Proteína C9orf72/genética , Atrofia , Mutación/genética , Proteínas tau/genética
16.
Hum Brain Mapp ; 44(7): 2684-2700, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36895129

RESUMEN

Recent studies have reported early cerebellar and subcortical impact in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72). However, the cerebello-subcortical circuitry in FTD has been understudied despite its essential role in cognition and behaviors related to FTD symptomatology. The present study aims to investigate the association between cerebellar and subcortical atrophy, and neuropsychiatric symptoms across genetic mutations. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative including mutation carriers and noncarrier first-degree relatives of known symptomatic carriers. Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed, and partial least squares analyses (PLS) were used to link morphometry and behavior. In presymptomatic C9orf72 expansion carriers, thalamic atrophy was found compared to noncarriers, suggesting the importance of this structure in FTD prodromes. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to neuropsychiatric symptoms, with significant overlap in brain/behavior patterns, but also specificity for each genetic mutation group. The largest differences were in the cerebellar atrophy (larger extent in C9orf72 expansion group) and more prominent amygdalar volume reduction in the MAPT group. Brain scores in the C9orf72 expansion carriers and MAPT carriers demonstrated covariation patterns concordant with atrophy patterns detectable up to 20 years before expected symptom onset. Overall, these results demonstrated the important role of the subcortical structures in genetic FTD symptom expression, particularly the cerebellum in C9orf72 and the amygdala in MAPT carriers.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Imagen por Resonancia Magnética , Cerebelo , Atrofia
17.
Neurobiol Dis ; 179: 106068, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898614

RESUMEN

BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Acetilcolina , Dopamina , Serotonina , Mutación , Imagen por Resonancia Magnética/métodos , Proteínas tau/genética
20.
Handb Clin Neurol ; 192: 187-218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36796942

RESUMEN

Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, ß-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Sinucleinopatías , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/terapia , Proteínas tau/metabolismo , Biomarcadores , Pronóstico , Proteínas de Unión al ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA