Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
iScience ; 26(10): 107826, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37752946

RESUMEN

Diabetes mellitus and alterations in thyroid hormone (TH) signaling are closely linked. Though the role of TH signaling in cell differentiation and growth is well known, it remains unclear whether its alterations contribute to the pathobiology of diabetic cells. Here, we aim to investigate whether the administration of exogenous T3 can counteract the cellular remodeling that occurs in diabetic cardiomyocytes, podocytes, and pancreatic beta cells. Treating diabetic rats with T3 prevents dedifferentiation, pathological growth, and ultrastructural alterations in podocytes and cardiomyocytes. In vitro, T3 reverses glucose-induced growth in human podocytes and cardiomyocytes, restores cardiomyocyte cytoarchitecture, and reverses pathological alterations in kidney and cardiac organoids. Finally, T3 treatment counteracts glucose-induced transdifferentiation, cell growth, and loss in pancreatic beta cells through TH receptor alpha1 activation. Our studies indicate that TH signaling activation substantially counteracts diabetes-induced pathological remodeling, and provide a potential therapeutic approach for the treatment of diabetes and its complications.

2.
J Exp Clin Cancer Res ; 42(1): 201, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559126

RESUMEN

BACKGROUND: The pancreatic microenvironment has a defensive role against cancer but it can acquire tumor-promoting properties triggered by multiple mechanisms including alterations in the equilibrium between proteases and their inhibitors. The identification of proteolytic events, targets and pathways would set the basis for the design of new therapeutic approaches. METHODS AND RESULTS: Here we demonstrate that spheroids isolated from human and murine healthy pancreas and co-transplanted orthotopically with pancreatic ductal adenocarcinoma (PDAC) in mouse pancreas inhibited tumor growth. The effect was mediated by trypsin-generated fibronectin (FN) fragments released by pancreatic spheroids. Tumor inhibition was observed also in a model of acute pancreatitis associated with trypsin activation. Mass spectrometry proteomic analysis of fragments and mAb against different FN epitopes identified the FN type III domain as responsible for the activity. By inhibiting integrin α5ß1, FAK and FGFR1 signaling, the fragments induced tumor cell detachment and reduced cell proliferation. Consistent with the mutual relationship between the two pathways, FGF2 restored both FGFR1 and FAK signaling and promoted PDAC cell adhesion and proliferation. FAK and FGFR inhibitors additively inhibited PDAC growth in vitro and in orthotopic in vivo models. CONCLUSIONS: This study identifies a novel role for pancreatic trypsin and fibronectin cleavage as a mechanism of protection against cancer by the pancreatic microenvironment. The finding of a FAK-FGFR cross-talk in PDAC support the combination of FAK and FGFR inhibitors for PDAC treatment to emulate the protective effect of the normal pancreas against cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Fibronectinas , Neoplasias Pancreáticas , Pancreatitis , Animales , Humanos , Ratones , Enfermedad Aguda , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Fibronectinas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Proteómica , Tripsina/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Biomed Mater ; 17(5)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35944550

RESUMEN

To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a bio-hybrid semi-degradable material composed of silk fibroin (SF) and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (Øin= 1.5 mm) via electrospinning. Bio-hybrid grafts werein vitrocharacterized in terms of morphology and mechanical behaviour, and compared to similar grafts of pure SF. Similarly, two native vessels from a rodent model (abdominal aorta and vena cava) were harvested and characterized. Preliminary implants were performed on Lewis rats to confirm the suitability of Silkothane® grafts for small-calibre applications, specifically as aortic insertion and femoral shunt. The manufacturing process generated pliable grafts consisting of a randomized fibrous mesh and exhibiting similar geometrical features to rat aortas. Both Silkothane® and pure SF grafts showed radial compliances in the range from 1.37 ± 0.86 to 1.88 ± 1.01% 10-2mmHg-1, lower than that of native vessels. The Silkothane® small-calibre devices were also implanted in rats demonstrating to be adequate for vascular applications; all the treated rats survived the surgery for three months after implantation, and 16 rats out of 17 (94%) still showed blood flow inside the graft at sacrifice. The obtained results lay the basis for a deeper investigation of the interaction between the Silkothane® graft and the implant site, which may deal with further analysis on the potentialities in terms of degradability and tissue formation, on longer time-points.


Asunto(s)
Fibroínas , Injerto Vascular , Animales , Prótesis Vascular , Poliuretanos , Ratas , Ratas Endogámicas Lew
4.
Cells ; 11(13)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805092

RESUMEN

The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided to create a new, reliable, and cost-effective in vitro system based on the Nichoid, a 3D microscaffold microfabricated by two-photon laser polymerization technology. We investigated whether these 3D microscaffold devices can create an environment allowing the manipulation, monitoring, and functional assessment of a mixed population of brain cells in vitro. With this aim, we set up a new model of hippocampal neurons and astrocytes co-cultured in the Nichoid microscaffold to generate brain micro-tissues of 30 µm thickness. After 21 days in culture, we morphologically characterized the 3D spatial organization of the hippocampal astrocytes and neurons within the microscaffold, and we compared our observations to those made using the classical 2D co-culture system. We found that the co-cultured cells colonized the entire volume of the 3D devices. Using confocal microscopy, we observed that within this period the different cell types had become well-differentiated. This was further elaborated with the use of drebrin, PSD-95, and synaptophysin antibodies that labeled the majority of neurons, both in the 2D as well as in the 3D co-cultures. Using scanning electron microscopy, we found that neurons in the 3D co-culture displayed a significantly larger amount of dendritic protrusions compared to neurons in the 2D co-culture. This latter observation indicates that neurons growing in a 3D environment may be more prone to form connections than those co-cultured in a 2D condition. Our results show that the Nichoid can be used as a 3D device to investigate the structure and morphology of neurons and astrocytes in vitro. In the future, this model can be used as a tool to study brain cell interactions in the discovery of important mechanisms governing neuronal plasticity and to determine the factors that form the basis of different human brain diseases. This system may potentially be further used for drug screening in the context of various brain diseases.


Asunto(s)
Astrocitos , Encefalopatías , Encefalopatías/metabolismo , Técnicas de Cocultivo , Hipocampo , Humanos , Neuronas/metabolismo
5.
Blood Adv ; 6(3): 866-881, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34852172

RESUMEN

Unrestrained activation of the complement system till the terminal products, C5a and C5b-9, plays a pathogenetic role in acute and chronic inflammatory diseases. In endothelial cells, complement hyperactivation may translate into cell dysfunction, favoring thrombus formation. The aim of this study was to investigate the role of the C5a/C5aR1 axis as opposed to C5b-9 in inducing endothelial dysfunction and loss of antithrombogenic properties. In vitro and ex vivo assays with serum from patients with atypical hemolytic uremic syndrome (aHUS), a prototype rare disease of complement-mediated microvascular thrombosis due to genetically determined alternative pathway dysregulation, and cultured microvascular endothelial cells, demonstrated that the C5a/C5aR1 axis is a key player in endothelial thromboresistance loss. C5a added to normal human serum fully recapitulated the prothrombotic effects of aHUS serum. Mechanistic studies showed that C5a caused RalA-mediated exocytosis of von Willebrand factor (vWF) and P-selectin from Weibel-Palade bodies, which favored further vWF binding on the endothelium and platelet adhesion and aggregation. In patients with severe COVID-19 who suffered from acute activation of complement triggered by severe acute respiratory syndrome coronavirus 2 infection, we found the same C5a-dependent pathogenic mechanisms. These results highlight C5a/C5aR1 as a common prothrombogenic effector spanning from genetic rare diseases to viral infections, and it may have clinical implications. Selective C5a/C5aR1 blockade could have advantages over C5 inhibition because the former preserves the formation of C5b-9, which is critical for controlling bacterial infections that often develop as comorbidities in severely ill patients. The ACCESS trial registered at www.clinicaltrials.gov as #NCT02464891 accounts for the results related to aHUS patients treated with CCX168.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , COVID-19 , Células Endoteliales , Humanos , Agregación Plaquetaria , SARS-CoV-2
6.
Biomolecules ; 11(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946440

RESUMEN

Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Dimetilpolisiloxanos/farmacología , Poliésteres/farmacología , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Células A549 , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Medios de Cultivo , Humanos , Lipopéptidos/biosíntesis , Pulmón/citología , Pulmón/efectos de los fármacos , Microscopía Electroquímica de Rastreo , Péptidos Cíclicos/biosíntesis , Factores de Transcripción/biosíntesis , Proteínas Señalizadoras YAP
7.
Org Lett ; 22(22): 8925-8930, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33147033

RESUMEN

Deoxygenative syntheses of fluorinated thioesters directly from carboxylic acids have been developed employing benzothiazolium reagents. The process using BT-SCF3 represents an attractive approach toward these SCF3-containing compounds that avoids the use of metal -SCF3 salts or preactivated acyl electrophiles. Moreover, the in situ activation of BT-SCF2H allows for an unprecedented nucleophilic difluoromethylthiolation reaction. DFT calculations support a mechanistic scenario involving a four-membered transition state where acyl substitution occurs without the formation of an unstable free -SCF2H anion.

8.
Adv Healthc Mater ; 9(20): e2000794, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914588

RESUMEN

To solve the problem of vascular access failure, a novel semi-degradable hybrid vascular graft, manufactured by electrospinning using silk fibroin and polyurethane (Silkothane), has been previously developed and characterized in vitro. This proof-of-concept animal study aims at evaluating the performances of Silkothane grafts in a sheep model of arteriovenous shunt, in terms of patency and short-term remodeling. Nine Silkothane grafts are implanted between the common carotid artery and the external jugular vein of nine sheep, examined by palpation three times per week, by echo-color Doppler every two weeks, and euthanized at 30, 60, and 90 days (N = 3 per group). At sacrifice, grafts are harvested and submitted for histopathology and/or scanning electron microcopy (SEM). No cases of graft-related complications are recorded. Eight of nine sheep (89%) show 100% primary unassisted patency at the respective time of sacrifice (flow rate 1.76 ± 0.61 L min-1 , one case of surgery-related thrombosis excluded). Histopathology and SEM analysis evidence signs of inflammation and pseudointima inside the graft lumen, especially at the venous anastomosis; however, endoluminal stenosis never impairs the functionality of the shunt and coverage by endothelial cells is observed. In this model, Silkothane grafts grant safety and 100% patency up to 90 days.


Asunto(s)
Fibroínas , Animales , Prótesis Vascular , Células Endoteliales , Oclusión de Injerto Vascular , Politetrafluoroetileno , Poliuretanos , Diálisis Renal , Ovinos , Grado de Desobstrucción Vascular
9.
Cells ; 9(8)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796521

RESUMEN

Stem cell fate and behavior are affected by the bidirectional communication of cells and their local microenvironment (the stem cell niche), which includes biochemical cues, as well as physical and mechanical factors. Stem cells are normally cultured in conventional two-dimensional monolayer, with a mechanical environment very different from the physiological one. Here, we compare culture of rat mesenchymal stem cells on flat culture supports and in the "Nichoid", an innovative three-dimensional substrate micro-engineered to recapitulate the architecture of the physiological niche in vitro. Two versions of the culture substrates Nichoid (single-layered or "2D Nichoid" and multi-layered or "3D Nichoid") were fabricated via two-photon laser polymerization in a biocompatible hybrid organic-inorganic photoresist (SZ2080). Mesenchymal stem cells, isolated from rat bone marrow, were seeded on flat substrates and on 2D and 3D Nichoid substrates and maintained in culture up to 2 weeks. During cell culture, we evaluated cell morphology, proliferation, cell motility and the expression of a panel of 89 mesenchymal stem cells' specific genes, as well as intracellular structures organization. Our results show that mesenchymal stem cells adhered and grew in the 3D Nichoid with a comparable proliferation rate as compared to flat substrates. After seeding on flat substrates, cells displayed large and spread nucleus and cytoplasm, while cells cultured in the 3D Nichoid were spatially organized in three dimensions, with smaller and spherical nuclei. Gene expression analysis revealed the upregulation of genes related to stemness and to mesenchymal stem cells' features in Nichoid-cultured cells, as compared to flat substrates. The observed changes in cytoskeletal organization of cells cultured on 3D Nichoids were also responsible for a different localization of the mechanotransducer transcription factor YAP, with an increase of the cytoplasmic retention in cells cultured in the 3D Nichoid. This difference could be explained by alterations in the import of transcription factors inside the nucleus due to the observed decrease of mean nuclear pore diameter, by transmission electron microscopy. Our data show that 3D distribution of cell volume has a profound effect on mesenchymal stem cells structure and on their mechanobiological response, and highlight the potential use of the 3D Nichoid substrate to strengthen the potential effects of MSC in vitro and in vivo.


Asunto(s)
Células Madre Mesenquimatosas/citología , Animales , Western Blotting , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Adhesiones Focales/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Arch Toxicol ; 94(9): 2965-2979, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577786

RESUMEN

Road traffic is one of the main sources of particulate emissions into the environment and has an increasing, negative impact on the release of potentially dangerous materials. Vehicle brakes release a significant amount of wear particles, and knowledge regarding their possible adverse effects is limited. One of the most dangerous elements contained in brake pads is copper (Cu), known to be toxic for human health. Therefore, our aim was to study the cell toxicity of particulate matter (PM) produced by different combinations of braking discs and pads containing different amounts of Cu. We investigated whether brake-derived microparticles have toxic effects on lung cells proportionally to their Cu content. Analyte content was measured in friction materials by XRFS and in PM2.5 captured during braking tests using SEM/EDX. The biological impact of brake-derived PM2.5 was investigated on a human epithelial alveolar cell line (A549). Cell viability, oxidative stress, mitochondrial membrane potential, apoptosis, and the pro-inflammatory response of the cells, as well as gene expression, were assessed following exposure to increasing PM2.5 concentrations (1, 10, 100, 200, and 500 µg/ml). The brake debris with the lowest Cu content did not induce significant changes in biological effects on A549 cells compared to normal controls, except for ROS production and IL6 gene expression. PM2.5 containing higher Cu quantities induced cell toxicity that correlated with Cu concentration. Our data suggest that the toxicity of PM2.5 from the brake system is mainly related to Cu content, thus confirming that eliminating Cu from brake pads will be beneficial for human health in urbanized environments.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cobre/toxicidad , Material Particulado/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Humanos , Estrés Oxidativo , Emisiones de Vehículos
11.
Eur J Med Chem ; 175: 63-71, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075609

RESUMEN

In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.


Asunto(s)
Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Iminoazúcares/uso terapéutico , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Bronquios/inmunología , Bronquios/microbiología , Bronquios/patología , Relación Dosis-Respuesta a Droga , Humanos , Iminoazúcares/administración & dosificación , Iminoazúcares/química , Iminoazúcares/farmacología , Inflamación/prevención & control , Concentración 50 Inhibidora , Ratones , Neutrófilos/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Estereoisomerismo , beta-Glucosidasa/antagonistas & inhibidores
12.
Biomed Mater ; 14(2): 025007, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30620939

RESUMEN

Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane® graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane® graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration.


Asunto(s)
Prótesis Vascular , Fibroínas/química , Poliuretanos/química , Diálisis Renal/instrumentación , Ingeniería de Tejidos/métodos , Dispositivos de Acceso Vascular , Animales , Materiales Biocompatibles/química , Pruebas de Coagulación Sanguínea , Bombyx , Adhesión Celular , Supervivencia Celular , Electroquímica , Hemólisis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Permeabilidad , Diálisis Renal/métodos , Estrés Mecánico , Suturas , Resistencia a la Tracción
13.
Chem Phys Lipids ; 200: 94-103, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27592248

RESUMEN

Cystic fibrosis (CF), one of the most common lethal hereditary diseases of white European populations, is caused by loss-of-function mutations in the CF Transmembrane conductance Regulator (CFTR) gene. One of the main causes of mortality is the onset of CF lung disease, which is characterized by chronic infection and inflammation resulting in the progressive remodelling, irreversible damage and fibrosis of the airways. An increasing number of studies indicate that sphingolipids are crucial players in pulmonary manifestations of CF, even if their direct involvement in CF lung disease is still unclear. In this review, we give an overview of the role of sphingolipids in CF pulmonary disease, focusing on the relationship between glycosphingolipids and lung inflammation, which represents the main hallmark of this disease.


Asunto(s)
Fibrosis Quística/metabolismo , Esfingolípidos/metabolismo , Animales , Humanos , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA