RESUMEN
INTRODUCTION: Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis. METHODS: To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics. Somatic and germline variants, copy-number alterations (CNAs), and complex biomarkers were investigated. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. The raw data were collected and re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability. RESULTS: The mean positive percentage agreement (PPA) of somatic variant calling was 76 % while the positive predictive value (PPV) was 89 % in relation to a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88 % for all and 97 % for the clinically relevant variants. CNA calls were concordant for 82 % of genomic regions. Homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94 %, 93 %, and 93 % of calls, respectively. Variability of CNAs and complex biomarkers did not decrease considerably after harmonization of the bioinformatic processing and was hence attributed mainly to wet-lab differences. CONCLUSION: Continuous optimization of bioinformatic workflows and participating in round robin tests are recommended.
Asunto(s)
Benchmarking , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Neoplasias , Medicina de Precisión , Humanos , Secuenciación del Exoma/métodos , Alemania , Medicina de Precisión/métodos , Medicina de Precisión/normas , Neoplasias/genética , Biomarcadores de Tumor/genética , Biología Computacional/métodosRESUMEN
PURPOSE: This study seeks to contribute real-world data on the prevalence of BRCA1/2 and HRR gene mutations in prostate cancer. METHODS: We compiled sequencing data of 197 cases of primary and metastatic prostate cancer, in which HRR mutation analysis was performed upon clinical request within the last 5 years. All cases were analyzed using a targeted NGS BRCAness multigene panel, including 8 HRR genes (ATM, BRCA1, BRCA2, CDK12, CHEK2, FANCA, HDAC2, PALB2). RESULTS: Our findings reveal a prevalence of potentially targetable mutations based on FDA criteria of 20.8%, which is comparable to the literature. However, the frequency of targetable BRCA2 mutations within our cohort was lower than reported for mCRPC and ATM and CHEK2 mutations were more prevalent instead. Thus, while 20.8% (n = 38) of the cases meet the criteria for olaparib treatment per FDA approval, only 4.9% (n = 9) align with the eligibility criteria according to the EMA approval. CONCLUSION: This study offers valuable real-world insights into the landscape of BRCA1/2 and HRR gene mutations and the practical clinical management of HRR gene testing in prostate cancer, contributing to a better understanding of patient eligibility for PARPi treatment.
Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Neoplasias de la Próstata Resistentes a la Castración , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Proteína BRCA1/genética , Proteína BRCA2/genética , Genes BRCA1 , Genes BRCA2 , Mutación , Metástasis de la Neoplasia , Prevalencia , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patologíaRESUMEN
Ki-67, a nuclear protein expressed in all stages of cellular proliferation, is a valuable tool to assess tumor proliferation and has been linked to more aggressive tumor behavior. However, interlaboratory staining heterogeneity and inter-observer variability challenge its reproducibility. Round Robin tests are a suitable tool to standardize and harmonize immunohistochemical and molecular analyses in histopathology. The study investigates the interrater and interlaboratory reproducibility of Ki-67-scoring using both manual and automated approaches. Unstained TMA slides comprising diverse tumor types (breast cancer, neuroendocrine tumors, lymphomas, and head and neck squamous cell carcinoma) were distributed to six pathology laboratories, each employing their routine staining protocols. Manual and automated scoring methods were applied, and interrater and interlaboratory agreement assessed using intraclass correlation coefficients (ICC). The results highlight good-to-excellent reliability overall, with automated scoring demonstrating higher consistency (ICC 0.955) than manual scoring (ICC 0.871). Results were more variable when looking at the individual entities. Reliability remained good for lymphomas (ICC 0.878) and breast cancer (ICC 0.784) and was poor in well-differentiated neuroendocrine tumors (ICC 0.354). This study clearly advocates standardized practices and training to ensure consistency in Ki-67-assessment, and it demonstrates that this can be achieved in a peer-to-peer approach in local quality-circles.
Asunto(s)
Inmunohistoquímica , Antígeno Ki-67 , Variaciones Dependientes del Observador , Antígeno Ki-67/análisis , Antígeno Ki-67/metabolismo , Humanos , Inmunohistoquímica/métodos , Reproducibilidad de los Resultados , Neoplasias/patología , Neoplasias/diagnóstico , Femenino , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismoRESUMEN
Purpose: Epigenetic alterations in uveal melanoma (UM) are still neither well characterized, nor understood. In this pilot study, we sought to provide a deeper insight into the possible role of epigenetic alterations in the pathogenesis of UM and their potential prognostic relevance. To this aim, we comprehensively profiled histone post-translational modifications (PTMs), which represent epigenetic features regulating chromatin accessibility and gene transcription, in UM formalin-fixed paraffin-embedded (FFPE) tissues, control tissues, UM cell lines, and healthy melanocytes. Methods: FFPE tissues of UM (n = 24), normal choroid (n = 4), human UM cell lines (n = 7), skin melanocytes (n = 6), and uveal melanocytes (n = 2) were analyzed through a quantitative liquid chromatography-mass spectrometry (LC-MS) approach. Results: Hierarchical clustering showed a clear separation with several histone PTMs that changed significantly in a tumor compared to normal samples, in both tissues and cell lines. In addition, several acetylations and H4K20me1 showed lower levels in BAP1 mutant tumors. Some of these changes were also observed when we compared GNA11 mutant tumors with GNAQ tumors. The epigenetic profiling of cell lines revealed that the UM cell lines MP65 and UPMM1 have a histone PTM pattern closer to the primary tissues than the other cell lines analyzed. Conclusions: Our results suggest the existence of different histone PTM patterns that may be important for diagnosis and prognosis in UM. However, further analyses are needed to confirm these findings in a larger cohort. The epigenetic characterization of a panel of UM cell lines suggested which cellular models are more suitable for epigenetic investigations.
Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Histonas , Proyectos Piloto , Melanoma/metabolismo , Melanocitos/metabolismo , Neoplasias de la Úvea/patología , Línea Celular , Espectrometría de MasasRESUMEN
Osteomyelitis (OM) remains one of the most feared complications in bone surgery and trauma. Its diagnosis remains a major challenge due to lack of guidelines. The aim of this study was to prospectively analyze the value of the most common and available diagnostic tools and to establish an OM score to derive treatment recommendations. All patients with suspected OM were included in a prospective pilot study. All patients underwent blood sampling for C-reactive protein and white blood cell count analysis. Magnetic resonance imaging (MRI), and microbiologic and histopathologic samples, were taken from representative sites of initial debridement. All patients were treated according to their OM test results and followed for at least one year. Subsequently, the value of individual or combined diagnostic tools was analyzed in patients with confirmed OM and in patients in whom OM was ruled out. Based on these findings, an OM score was developed that included MRI, microbiology, and histopathology. The score identified all control patients and all but one OM patient, resulting in a correct diagnosis of 93.3%, which was validated in a second independent larger cohort. This was the first study to analyze the value of the most commonly used tools to diagnose OM. The proposed OM score provides a simple scoring system to safely interpret test results with high accuracy.
RESUMEN
Predictive marker (re-)analysis of tumor material can be a real obstacle in several tumor entities, like non-small cell lung cancer (NSCLC), due to difficult anatomic conditions and small biopsy samples. As reported in the literature, cytological samples comprise excellent starting material for predictive marker analysis like fluorescence in situ hybridization and next generation sequencing. As for formalin-fixed paraffin-embedded tissue samples, rigorous quality control and standardized laboratory operating procedures are mandatory. Further advantages of cytological specimens are the rapid and straightforward inspection of representativeness, for example by rapid on-site evaluation (ROSE). Another striking advantage is that the fresh cellular material from smears and serous cavity fluids can be used for the generation of two- and three-dimensional cell culture models. Hereby, in addition to the conventional biomarker testing, complex complementary functional genomic assays can also be applied, for example, to assess the effects of multiple variants in one sample and unknown variants of tumor driver genes and tumor suppressor genes. This information may provide additional vulnerabilities of the tumor to be considered for the therapy decision, for example in the molecular tumor board.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Hibridación Fluorescente in Situ , Citodiagnóstico/métodos , Técnicas CitológicasAsunto(s)
Sociedades Médicas , Enfermedades Torácicas , Tórax , Humanos , Fenómenos Biológicos , Tórax/patología , AlemaniaRESUMEN
Targeted therapy in lung cancer requires the assessment of multiple oncogenic driver alterations, including fusion genes. This retrospective study evaluated the Idylla GeneFusion prototype, an automated and ease-of-use (<2 minutes) test, with a short turnaround time (3 hours) to detect fusions involving ALK, ROS1, RET, and NTRK1/2/3 genes and MET exon 14 skipping. This multicenter study (18 centers) included 313 tissue samples from lung cancer patients with 97 ALK, 44 ROS1, 20 RET, and 5 NTRKs fusions, 32 MET exon 14 skipping, and 115 wild-type samples, previously identified with reference methods (RNA-based next-generation sequencing/fluorescence in situ hybridization/quantitative PCR). Valid results were obtained for 306 cases (98%), overall concordance between Idylla and the reference methods was 89% (273/306); overall sensitivity and specificity were 85% (165/193) and 96% (108/113), respectively. Discordances were observed in 28 samples, where Idylla did not detect the alteration identified by the reference methods; and 5 samples where Idylla identified an alteration not detected by the reference methods. All of the ALK-, ROS1-, and RET-specific fusions and MET exon 14 skipping identified by Idylla GeneFusion were confirmed by reference method. To conclude, Idylla GeneFusion is a clinically valuable test that does not require a specific infrastructure, allowing a rapid result. The absence of alteration or the detection of expression imbalance only requires additional testing by orthogonal methods.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Estudios RetrospectivosRESUMEN
AIM: Next generation sequencing (NGS) represents a key diagnostic tool to identify clinically relevant gene alterations for treatment-decision making in cancer care. However, the complex manual workflow required for NGS has limited its implementation in routine clinical practice. In this worldwide study, we validated the clinical performance of the TargetPlex FFPE-Direct DNA Library Preparation Kit for NGS analysis. Impressively, this new assay obviates the need for separate, labour intensive and time-consuming pre-analytical steps of DNA extraction, purification and isolation from formalin-fixed paraffin embedded (FFPE) specimens in the NGS workflow. METHODS: The TargetPlex FFPE-Direct DNA Library Preparation Kit, which enables NGS analysis directly from FFPE, was specifically developed for this study by TargetPlex Genomics Pleasanton, California. Eleven institutions agreed to take part in the study coordinated by the Molecular Cytopathology Meeting Group (University of Naples Federico II, Naples, Italy). All participating institutions received a specific Library Preparation Kit to test eight FFPE samples previously assessed with standard protocols. The analytical parameters and mutations detected in each sample were then compared with those previously obtained with standard protocols. RESULTS: Overall, 92.8% of the samples were successfully analysed with the TargetPlex FFPE-Direct DNA Library Preparation Kit on Thermo Fisher Scientific and Illumina platforms. Altogether, in comparison with the standard workflow, the TargetPlex FFPE-Direct DNA Library Preparation Kit was able to detect 90.5% of the variants. CONCLUSION: The TargetPlex FFPE-Direct DNA Library Preparation Kit combined with the SiRe panel constitutes a convenient, practical and robust cost-saving solution for FFPE NGS analysis in routine practice.
Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Adhesión en ParafinaRESUMEN
Due to pelvic symptoms, a diagnostic sectional imaging was initiated in a 52-year-old female patient. This revealed a cystic, retrorectal mass, suspected to be a tailgut cyst. Due to the symptoms and the unclear dignity after several frustrating endosonographic punctures, a robotic-assisted resection of the cystic Tumor was performed after careful interdisciplinary consultation.The histological examination confirmed the diagnosis of a tailgut cyst but also revealed parts of an intestinally differentiated adenocarcinoma.Due to the unclear metastatic behaviour, robotic-assisted low anterior resection with total mesorectal excision was performed as oncological resection, similar to rectal carcinomas. No residuals or lymph node metastases were detectable in the histological examination, so that follow- up monitoring was recommended.Retrorectal tumours are an extremely rare entity, worldwide only 28 cases of an intestinally differentiated carcinoma in a tailgut cyst have been described so far. Since there are no clear recommendations in the literature regarding the diagnostic or therapeutic procedure, we would like to discuss a possible algorithm in case of a proven retrorectal mass in our case study.
Asunto(s)
Adenocarcinoma , Quistes , Neoplasias del Recto , Procedimientos Quirúrgicos Robotizados , Adenocarcinoma/cirugía , Quistes/diagnóstico por imagen , Quistes/cirugía , Femenino , Humanos , Hallazgos Incidentales , Persona de Mediana EdadRESUMEN
INTRODUCTION: KRAS mutations, the most frequent gain-of-function alterations in NSCLC, are currently emerging as potential predictive therapeutic targets. The role of KRAS-G12C (Kr_G12C) is of special interest after the recent discovery and preclinical analyses of two different Kr_G12C covalent inhibitors (AMG-510, MRTX849). METHODS: KRAS mutations were evaluated in formalin-fixed, paraffin-embedded tissue sections by a microfluidic-based multiplex polymerase chain reaction platform as a component of the previously published European Thoracic Oncology Platform Lungscape 003 Multiplex Mutation study, of clinically annotated, resected, stage I to III NSCLC. In this study, -Kr_G12C mutation prevalence and its association with clinicopathologic characteristics, molecular profiles, and postoperative patient outcome (overall survival, relapse-free survival, time-to-relapse) were explored. RESULTS: KRAS gene was tested in 2055 Lungscape cases (adenocarcinomas: 1014 [49%]) with I or II or III stage respective distribution of 53% or 24% or 22% and median follow-up of 57 months. KRAS mutation prevalence in the adenocarcinoma cohort was 38.0% (95% confidence interval (CI): 35.0% to 41.0%), with Kr_G12C mutation representing 17.0% (95% CI: 14.7% to 19.4%). In the "histologic-subtype" cohort, Kr_G12C prevalence was 10.5% (95% CI: 9.2% to 11.9%). When adjusting for clinicopathologic characteristics, a significant negative prognostic effect of Kr_G12C presence versus other KRAS mutations or nonexistence of KRAS mutation was identified in the adenocarcinoma cohort alone and in the "histologic-subtype" cohort. For overall survival in adenocarcinomas, hazard ratio (HR)G12C versus other KRAS is equal to 1.39 (95% CI: 1.03 to 1.89, p = 0.031) and HRG12C versus no KRAS is equal to 1.32 (95% CI: 1.03 to 1.69, p = 0.028) (both also significant in the "histologic-subtype" cohort). For time-to-relapse, HRG12C versus other KRAS is equal to 1.41 (95% CI: 1.03 to 1.92, p = 0.030). In addition, among all patients, for relapse-free survival, HRG12C versus no KRAS is equal to 1.27 (95% CI: 1.04 to 1.54, p = 0.017). CONCLUSIONS: In this large, clinically annotated stage I to III NSCLC cohort, the specific Kr_G12C mutation is significantly associated with poorer prognosis (adjusting for clinicopathologic characteristics) among adenocarcinomas and in unselected NSCLCs.
Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pulmonares/genética , Mutación , Recurrencia Local de Neoplasia , Piperazinas , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas , PirimidinasRESUMEN
We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.
Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/genética , Cadherinas/genética , Cateninas/genética , Adhesión Celular , Femenino , Humanos , Ratones , Microambiente Tumoral , Catenina deltaRESUMEN
Precision cancer medicine (PCM) holds great promises to offer more effective therapies to patients based on molecular profiling of their individual tumours. Although the PCM approach seems intuitive, multiple conceptional and structural challenges interfere with the broad implementation of PCM into clinical practice. Accordingly, concerted national and international efforts are needed to guide the further development and broad adoption of PCM in Germany. With support of the 'German Cancer Aid' (Deutsche Krebshilfe [DKH]) a task force 'Molecular Diagnostics and Therapy' was implemented. In two workshops supported by the DKH, delegates from the fourteen comprehensive cancer centresidentified key topics essential to implement quality-guided, harmonized and adaptable PCM. Based on an online questionnaire and using a modified Delphi approach, nine statements were drafted and evaluated within the group. These statements could serve as a basis to define a collaborative strategy for PCM in the future with the aim to sustain and further improve its quality.
Asunto(s)
Antineoplásicos/uso terapéutico , Técnicas de Diagnóstico Molecular/normas , Terapia Molecular Dirigida/normas , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisión/normas , Proyectos de Investigación/normas , Consenso , Técnica Delphi , Alemania , Humanos , Neoplasias/genética , Valor Predictivo de las PruebasRESUMEN
In June 2019, a lung symposium was held at the 42nd European Congress of Cytology in Malmö, Sweden. Due to the current importance of cytological samples in the diagnoses and molecular analysis to set up the utmost management of lung cancer patients, cytologists from different countries shared the experience of their institutions. The place of the cytological samples gains more and more importance on the potential long-term survival gain through personalized medicine and this harbors the improvement of the guidelines both in pathology and cytology field. In this symposium, the new 6-tiered reporting system for pulmonary cytology proposed by the Papanicolaou Society of Cytopathology and detailed cytomorphological approach to lung carcinoma including lookalike lesions and DNA- and RNA-based analysis of cytology material have been discussed. The cytopathologist plays a pivotal role in ensuring success of a correct triage for the cytology material to be sure of the adequacy and quality of the yield from the rapid on-site evaluation till the report which should encompass molecular profile in rational patient management.
Asunto(s)
Biomarcadores de Tumor/análisis , Citodiagnóstico/métodos , Neoplasias Pulmonares/diagnóstico , Guías de Práctica Clínica como Asunto/normas , Transcriptoma , Biomarcadores de Tumor/genética , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Patología Molecular , Medicina de Precisión , Sociedades MédicasRESUMEN
Following publication of the original article [1], we have been alerted to errors in Figs. 2 and 8. In Fig. 2B, the GAPDH loading control for Hec1A cells is shown twice in error (in Fig. 2B and Fig. 2C). In Fig. 8, in testis case 1 (first column) the MAGE-A4 staining panel was repeated and also appears as the NY-ESO-1 staining panel in error. The corrected versions of Fig. 2 and Fig. 8 are shown below. We apologize for this inconvenience.
RESUMEN
PURPOSE: Combination of immune checkpoint inhibitors with chemotherapy is under investigation for cancer treatment. EXPERIMENTAL DESIGN: We studied the rationale of such a combination for treating mesothelioma, a disease with limited treatment options. RESULTS: The combination of gemcitabine and immune checkpoint inhibitors outperformed immunotherapy alone with regard to tumor control and survival in a preclinical mesothelioma model; however, the addition of dexamethasone to gemcitabine and immune checkpoint inhibitors nullified the synergistic clinical response. Furthermore, treatment with gemcitabine plus anti-PD-1 resulted in an objective clinical response in two patients with mesothelioma, who were resistant to gemcitabine or anti-PD-1 as monotherapy. CONCLUSIONS: Thus, treatment of mesothelioma with a combination of gemcitabine with immune checkpoint inhibitors is feasible and results in synergistic clinical response compared with single treatment in the absence of steroids.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Biomarcadores de Tumor , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Inmunomodulación/efectos de los fármacos , Neoplasias Pulmonares/inmunología , Mesotelioma/inmunología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biopsia , Línea Celular Tumoral , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Expresión Génica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Mesotelioma/diagnóstico , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Mesotelioma Maligno , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto , GemcitabinaRESUMEN
Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1high/DLL3high/NOTCHlow, type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1low/DLL3low/NOTCHhigh, and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.
Asunto(s)
Carcinoma Neuroendocrino/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Tumores Neuroendocrinos/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Análisis Mutacional de ADN , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Técnicas In Vitro , Neoplasias Pulmonares/genéticaRESUMEN
Oncogenic rearrangements leading to targetable gene fusions are well-established cancer driver events in lung adenocarcinoma. Accurate and reliable detection of these gene fusions is crucial to select the appropriate targeted therapy for each patient. We compared the targeted next-generation-sequencing Oncomine Focus Assay (OFA; Thermo Fisher Scientific) with conventional ALK FISH and anti-Alk immunohistochemistry in a cohort of 52 lung adenocarcinomas (10 ALK rearranged, 18 non-ALK rearranged, and 24 untested cases). We found a sensitivity and specificity of 100% for detection of ALK rearrangements using the OFA panel. In addition, targeted next generation sequencing allowed us to analyze a set of 23 driver genes in a single assay. Besides EML4-ALK (11/52 cases), we detected EZR-ROS1 (1/52 cases), KIF5B-RET (1/52 cases) and MET-MET (4/52 cases) fusions. All EML4-ALK, EZR-ROS1 and KIF5B-RET fusions were confirmed by multiplexed targeted next generation sequencing assay (Oncomine Solid Tumor Fusion Transcript Kit, Thermo Fisher Scientific). All cases with EML4-ALK rearrangement were confirmed by Alk immunohistochemistry and all but one by ALK FISH. In our experience, targeted next-generation sequencing is a reliable and timesaving tool for multiplexed detection of targetable rearrangements. Therefore, targeted next-generation sequencing represents an efficient alternative to time-consuming single target assays currently used in molecular pathology.