Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 844, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996876

RESUMEN

BACKGROUND: Non-union formation still represents a major burden in trauma and orthopedic surgery. Moreover, aged patients are at an increased risk for bone healing failure. Parathyroid hormone (PTH) has been shown to accelerate fracture healing in young adult animals. However, there is no information whether PTH also stimulates bone regeneration in atrophic non-unions in the aged. Therefore, the aim of the present study was to analyze the effect of PTH on bone regeneration in an atrophic non-union model in aged CD-1 mice. METHODS: After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. The animals were treated daily with either 200 mg/kg body weight PTH 1-34 (n = 17) or saline (control; n = 17) subcutaneously. Bone regeneration was analyzed by means of X-ray, biomechanics, micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses. RESULTS: In PTH-treated animals bone formation was markedly improved when compared to controls. This was associated with an increased bending stiffness as well as a higher number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD31-positive microvessels within the callus tissue. Furthermore, PTH-treated aged animals showed a decreased inflammatory response, characterized by a lower number of MPO-positive granulocytes and CD68-positive macrophages within the bone defects when compared to controls. Additional Western blot analyses demonstrated a significantly higher expression of cyclooxygenase (COX)-2 and phosphoinositide 3-kinase (PI3K) in PTH-treated mice. CONCLUSION: Taken together, these findings indicate that PTH is an effective pharmacological compound for the treatment of non-union formation in aged animals.


Asunto(s)
Regeneración Ósea , Fosfatidilinositol 3-Quinasas , Humanos , Ratones , Animales , Anciano , Microtomografía por Rayos X , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico , Curación de Fractura
2.
Bioengineering (Basel) ; 10(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829769

RESUMEN

With a gradually increasing elderly population, the treatment of geriatric patients represents a major challenge for trauma and reconstructive surgery. Although, it is well established that aging affects bone metabolism, it is still controversial if aging impairs bone healing. Accordingly, we investigated fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice using a stable closed femoral fracture model. Bone healing was analyzed by radiographic, biomechanical and histological analysis at 1, 2, 3, 4 and 5 weeks after fracture. Our results demonstrated an increased callus diameter to femoral diameter ratio in aged animals at later time points of fracture healing when compared to young adult mice. Moreover, our biomechanical analysis revealed a significantly decreased bending stiffness at 3 and 4 weeks after fracture in aged animals. In contrast, at 5 weeks after fracture, the analysis showed no significant difference in bending stiffness between the two study groups. Additional histological analysis showed a delayed endochondral ossification in aged animals as well as a higher amounts of fibrous tissue at early healing time points. These findings indicate a delayed process of callus remodeling in aged CD-1 mice, resulting in a delayed fracture healing when compared to young adult animals. However, the overall healing capacity of the fractured femora was not affected by aging.

3.
Photoacoustics ; 28: 100409, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36213763

RESUMEN

Non-union formation represents a major complication in trauma surgery. Adequate vascularization has been recognized as vital for bone healing. However, the role of vascularization in the pathophysiology of non-union formation remains elusive. This is due to difficulties in studying bone microcirculation in vivo. Therefore, we herein studied in a murine osteotomy model whether photoacoustic imaging may be used to analyze vascularization in bone healing and non-union formation. We found that oxygen saturation within the callus tissue is significantly lower in non-unions compared to unions and further declines over time. Moreover, the amount of total hemoglobin (HbT) within the callus tissue was markedly reduced in non-unions. Correlation analyses showed a strong positive correlation between microvessel density and HbT, indicating that photoacoustically determined HbT is a valid parameter to assess vascularization during bone healing. In summary, photoacoustic imaging is a promising approach to study vascular function and tissue oxygenation in bone regeneration.

4.
Acta Biomater ; 108: 194-206, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32194259

RESUMEN

Porous polyethylene (pPE) is a commonly used biomaterial in craniofacial reconstructive surgery. However, implant failure due to insufficient vascularization represents a major issue. To overcome this problem, we herein introduce an effective strategy to improve the vascularization and incorporation of pPE. Adipose tissue-derived microvascular fragments (MVF) from transgenic green fluorescent protein (GFP)+ mice were suspended in platelet-rich plasma (PRP) for the coating of pPE. PRP/MVF-coated pPE as well as PRP-coated and uncoated controls were subsequently implanted into the dorsal skinfold chamber and the flanks of GFP- wild-type mice to analyze their in vivo performance throughout 2, 4 and 8 weeks by means of intravital fluorescence microscopy, histology and immunohistochemistry. The GFP+/GFP- cross-over design allowed the identification of GFP+ MVF within the implants. Shortly after implantation, they rapidly reassembled into new blood-perfused microvascular networks, resulting in a significantly accelerated vascularization of PRP/MVF-coated pPE when compared to both controls. The overall numbers of rolling and adherent leukocytes within the microcirculation as well as macrophages, multi-nucleated giant cells and mast cells around the implants did not differ between the three groups. However, in contrast to uncoated controls, PRP/MVF-coated and PRP-coated pPE promoted pro-angiogenic M2 macrophage polarization at the implantation site. These findings demonstrate that PRP/MVF-coating represents a highly effective strategy to enhance the vascularization, biocompatibility and tissue incorporation of pPE. STATEMENT OF SIGNIFICANCE: The clinical in vivo performance of implanted biomaterials is crucially dependent on their adequate incorporation into the body. To achieve this, we herein introduce an effective biological coating strategy. Our results demonstrate that coating with PRP and MVF accelerates and enhances the vascularization, biocompatibility and tissue incorporation of porous polyethylene. Because this type of biological coating is easily applicable on any type of biomaterial, our approach may rapidly be translated into clinical practice to improve the outcome of various regenerative approaches.


Asunto(s)
Plasma Rico en Plaquetas , Polietileno , Tejido Adiposo , Animales , Ratones , Neovascularización Fisiológica , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA