RESUMEN
Sea-ice microalgae are a key source of energy and nutrient supply to polar marine food webs, particularly during spring, prior to open-water phytoplankton blooms. The nutritional quality of microalgae as a food source depends on their biomolecular (lipid:protein:carbohydrate) composition. In this study, we used synchrotron-based Fourier transform infra-red microspectroscopy (s-FTIR) to measure the biomolecular content of a dominant sea-ice taxa, Nitzschia frigida, from natural land-fast ice communities throughout the Arctic spring season. Repeated sampling over six weeks from an inner (relatively stable) and an outer (relatively dynamic) fjord site revealed high intra-specific variability in biomolecular content, elucidating the plasticity of N. frigida to adjust to the dynamic sea ice and water conditions. Environmental triggers indicating the end of productivity in the ice and onset of ice melt, including nitrogen limitation and increased water temperature, drove an increase in lipid and fatty acids stores, and a decline in protein and carbohydrate content. In the context of climate change and the predicted Atlantification of the Arctic, dynamic mixing and abrupt warmer water advection could truncate these important end-of-season environmental shifts, causing the algae to be released from the ice prior to adequate lipid storage, influencing carbon transfer through the polar marine system.
Asunto(s)
Cubierta de Hielo , Estaciones del Año , Regiones Árticas , Cambio Climático , Microalgas/metabolismo , Diatomeas/metabolismo , Diatomeas/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Fitoplancton/metabolismo , Fitoplancton/fisiologíaRESUMEN
Arctic sea-ice diatoms fuel polar marine food webs as they emerge from winter darkness into spring. Through their photosynthetic activity they manufacture the nutrients and energy that underpin secondary production. Sea-ice diatom abundance and biomolecular composition vary in space and time. With climate change causing short-term extremes and long-term shifts in environmental conditions, understanding how and in what way diatoms adjust biomolecular stores with environmental perturbation is important to gain insight into future ecosystem energy production and nutrient transfer. Using synchrotron-based Fourier transform infrared microspectroscopy, we examined the biomolecular composition of five dominant sea-ice diatom taxa from landfast ice communities covering a range of under-ice light conditions during spring, in Svalbard, Norway. In all five taxa, we saw a doubling of lipid and fatty acid content when light transmitted to the ice-water interface was >5% but <15% (85%-95% attenuation through snow and ice). We determined a threshold around 15% light transmittance after which biomolecular synthesis plateaued, likely because of photoinhibitory effects, except for Navicula spp., which continued to accumulate lipids. Increasing under-ice light availability led to increased energy allocation towards carbohydrates, but this was secondary to lipid synthesis, whereas protein content remained stable. It is predicted that under-ice light availability will change in the Arctic, increasing because of sea-ice thinning and potentially decreasing with higher snowfall. Our findings show that the nutritional content of sea-ice diatoms is taxon-specific and linked to these changes, highlighting potential implications for future energy and nutrient supply for the polar marine food web.
RESUMEN
A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of trans-3-hexenedioic acid by the application of uniaxial compression stress. A detailed structural investigation of the mechanical deformation at the macroscopic and microscopic levels by three distinct force measurement techniques (including shear and three-point bending test), single crystal X-ray diffraction techniques, and polarized synchrotron-FTIR microspectroscopy highlighted that mechanical twinning promoted the deformation. The presence of two crystallographically equivalent faces and the herringbone arrangement promoted the two-directional ferroelastic deformation. In addition, anisotropic heat transfer properties in the parent and the deformed domains were investigated by thermal diffusivity measurement on all three axes using microscale temperature-wave analysis (µ-TWA). A correlation between the anisotropic structural arrangement and the difference in thermal diffusivity and mechanical behavior in the two-directional organoferroelastic deformation could be established. The structural and molecular level information from this two-directional ferroelastic deformation would lead to a more profound understanding of the structure-property relationship in multidirectional deformation in organic crystals.
RESUMEN
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Asunto(s)
Láseres de Semiconductores , Espectrofotometría Infrarroja/métodosRESUMEN
The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5â nm to investigate the fate of nanospheres inside pheochromocytoma (PCâ 12) cells following SSâ THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10â min of SSâ THz exposure in the range 0.5-20â THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder (26%) sequestered in vacuoles. Cellular uptake of NS in response to SSâ THz radiation could have suitable applications in a vast number of biomedical applications, regenerative medicine, vaccines, cancer therapy, gene and drug delivery.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Nanosferas , Feocromocitoma , Humanos , Radiación Terahertz , Nanosferas/química , SincrotronesRESUMEN
The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.
Asunto(s)
Leishmania major , Leishmaniasis , Animales , Sincrotrones , Espectrofotometría Infrarroja , Leishmaniasis/diagnóstico , Macrófagos/parasitologíaRESUMEN
Mozzarella cheese was industrially frozen (-18 °C), stored for up to six months, tempered at 4 °C for one or three weeks and the structure and functionality compared to cheese stored at 4 °C and cheese aged at 4 °C for four weeks prior to freezing. When combined with ageing or tempering, the slow industrial freezing minimised changes to the protein network as detected by confocal microscopy and arrested proteolysis. Cheese functionality improved with three weeks of tempering, with properties similar to cheese refrigerated for one month, potentially due to increased proteolysis and protein rehydration. Frozen storage induced ß-sheet and ß-turn structures, as detected by S-FTIR microspectroscopy, with longer tempering leading to structural recovery in the cheese. This study indicates the proteolysis and functionality of frozen cheese can be optimised with tempering time. It also provides new insights into heat transfer during the industrial freezing and tempering of cheese.
Asunto(s)
Queso , Congelación , Industrias , ProteolisisRESUMEN
Phase imaging of biochemical samples has been demonstrated for the first time at the Infrared Microspectroscopy (IRM) beamline of the Australian Synchrotron using the usually discarded near-IR (NIR) region of the synchrotron-IR beam. The synchrotron-IR beam at the Australian Synchrotron IRM beamline has a unique fork shaped intensity distribution as a result of the gold coated extraction mirror shape, which includes a central slit for rejection of the intense X-ray beam. The resulting beam configuration makes any imaging task challenging. For intensity imaging, the fork shaped beam is usually tightly focused to a point on the sample plane followed by a pixel-by-pixel scanning approach to record the image. In this study, a pinhole was aligned with one of the lobes of the fork shaped beam and the Airy diffraction pattern was used to illuminate biochemical samples. The diffracted light from the samples was captured using a NIR sensitive lensless camera. A rapid phase-retrieval algorithm was applied to the recorded intensity distributions to reconstruct the phase information. The preliminary results are promising to develop multimodal imaging capabilities at the IRM beamline of the Australian Synchrotron.
Asunto(s)
Imagen Multimodal , Sincrotrones , Australia , AlgoritmosRESUMEN
Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.
Asunto(s)
Antioxidantes , Hipersensibilidad , Ratones , Humanos , Animales , Leucocitos Mononucleares , Ovalbúmina , Epigénesis Genética , AntiinflamatoriosRESUMEN
The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.
Asunto(s)
Carbono , Suelo , Secuestro de Carbono , Carbón Orgánico/química , Suelo/química , Microbiología del SueloRESUMEN
Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical thermoset in a rigid, three-dimensional (3D) motif cured under an external magnetic field. The outcomes of the four-angle analysis of the synchrotron IRM beamline provide for the first time quantitative insights into the molecular orientation at the atomic-scale level. These insights, in turn, were utilized to apply Quantum Computational modeling theories and Monte Carlo simulation to study the effect of the magnetic field-induced molecular alignment on tuning electrical charge transport characteristics. The results explored the impact of radical density on forming percolation networks, showing a robust protocol for designing polymers with high electrical/thermal conductivity.
RESUMEN
Polarisation analysis in the mid-infrared fingerprint region was carried out on thin (â¼1 µm) Si and SiO2 films evaporated via glancing angle deposition (GLAD) method at 70∘ to the normal. Synchrotron-based infrared microspectroscopic measurements were carried out on the Infrared Microspectroscopy (IRM) beamline at Australian Synchrotron. Specific absorption bands, particularly Si-O-Si stretching vibration, was found to follow the angular dependence of â¼cos2θ, consistent with the absorption anisotropy. This unexpected anisotropy stems from the enhanced absorption in nano-crevices, which have orientation following the cos2θ angular dependence as revealed by Fourier transforming the image of the surface of 3D columnar films and numerical modeling of light field enhancement by sub-wavelength nano-crevices.
RESUMEN
The Infrared Microspectroscopy Beamline at the Australian Synchrotron is equipped with a Fourier transform infrared (FTIR) spectrometer, which is coupled with an infrared (IR) microscope and a choice of two detectors: a single-point narrow-band mercury cadmium telluride (MCT) detector and a 64 × 64 multi-pixel focal plane array (FPA) imaging detector. A scanning-based point-by-point mapping method is commonly used with a tightly focused synchrotron IR beam at the sample plane, using an MCT detector and a matching 36× IR reflecting objective and condenser (NA = 0.5), which is time consuming. In this study, the beam size at the sample plane was increased using a 15× objective and the spatio-spectral aberrations were investigated. A correlation-based semi-synthetic computational optical approach was applied to assess the possibilities of exploiting the aberrations to perform rapid imaging rather than a mapping approach.
RESUMEN
Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 µm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.
Asunto(s)
Enfermedades de las Plantas , Epidermis de la Planta/química , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico/fisiología , Ceras/química , Microscopía Electrónica de Rastreo , Hojas de la Planta/químicaRESUMEN
Correction for 'Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells' by Jitraporn Vongsvivut et al., Analyst, 2019, 144, 3226-3238, DOI: 10.1039/C8AN01543K.
RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Saliva/química , Animales , Chlorocebus aethiops , Estudios de Cohortes , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Método de Montecarlo , Pruebas en el Punto de Atención , Prueba de Estudio Conceptual , SARS-CoV-2 , Sensibilidad y Especificidad , Manejo de Especímenes , Espectrofotometría Infrarroja , Células VeroRESUMEN
Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by â¼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.
Asunto(s)
Agregado de Proteínas , Sincrotrones , Lípidos , Proteínas , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The management of respiratory diseases relies on the daily administration of multiple active pharmaceutical ingredients (APIs), leading to a lack of patient compliance and impaired quality of life. The frequency and dosage of the APIs result in increased side effects that further worsens the overall patient condition. Here, the manufacture of polymer-polymer core-shell microparticles for the sequential delivery of multiple APIs by inhalation delivery is reported. The microparticles, composed of biodegradable polymers silk fibroin (shell) and poly(L-lactic acid) (core), incorporating ciprofloxacin in the silk layer and ibuprofen (PLLA core) as the antibiotic and anti-inflammatory model APIs, respectively. The polymer-polymer core-shell structure and the spatial distribution of the APIs have been characterized using cutting-edge synchrotron macro ATR-FTIR technique, which was correlated with the respective API sequential release profiles. The APIs microparticles had a suitable size and aerosol properties for inhalation therapies (≤4.94 ± 0.21µm), with low cytotoxicity and immunogenicity in healthy lung epithelial cells. The APIs compartmentalization obtained by the microparticles not only could inhibit potential actives interactions but can provide modulation of the APIs release profiles via an inhalable single administration.
Asunto(s)
Polímeros , Calidad de Vida , Administración por Inhalación , Ciprofloxacina , Humanos , Ibuprofeno , Tamaño de la PartículaRESUMEN
Hepatocytes are essential for maintaining the homeostasis of iron and lipid metabolism in mammals. Dysregulation of either iron or lipids has been linked with serious health consequences, including non-alcoholic fatty liver disease (NAFLD). Considered the hepatic manifestation of metabolic syndrome, NAFLD is characterised by dysregulated lipid metabolism leading to a lipid storage phenotype. Mild to moderate increases in hepatic iron have been observed in â¼30% of individuals with NAFLD; however, direct observation of the mechanism behind this increase has remained elusive. To address this issue, we sought to determine the metabolic consequences of iron loading on cellular metabolism using live cell, time-lapse Fourier transform infrared (FTIR) microscopy utilising a synchrotron radiation source to track biochemical changes. The use of synchrotron FTIR is non-destructive and label-free, and allowed observation of spatially resolved, sub-cellular biochemical changes over a period of 8â h. Using this approach, we have demonstrated that iron loading in AML12 cells induced perturbation of lipid metabolism congruent with steatosis development. Iron-loaded cells had approximately three times higher relative ester carbonyl concentration compared with controls, indicating an accumulation of triglycerides. The methylene/methyl ratio qualitatively suggests the acyl chain length of fatty acids in iron-loaded cells increased over the 8â h period of monitoring compared with a reduction observed in the control cells. Our findings provide direct evidence that mild to moderate iron loading in hepatocytes drives de novo lipid synthesis, consistent with a role for iron in the initial hepatic lipid accumulation that leads to the development of hepatic steatosis.
Asunto(s)
Rastreo Celular/métodos , Hígado Graso/patología , Hepatocitos/metabolismo , Sobrecarga de Hierro/fisiopatología , Hierro/metabolismo , Sincrotrones/instrumentación , Imagen de Lapso de Tiempo/métodos , Animales , Hígado Graso/metabolismo , Hepatocitos/citología , Metabolismo de los Lípidos , Ratones , MicroscopíaRESUMEN
Kingdom of Tonga in Polynesia is one of the most obese nations where metabolic conditions, sedentary lifestyles, and poor quality diet are widespread. These factors can lead to poor musculoskeletal health. However, whether metabolic abnormalities such as osteoporosis occurred in archaeological populations of Tonga is unknown. We employed a microscopic investigation of femur samples to establish whether bone loss afflicted humans in this Pacific region approximately 3000 years ago. Histology, laser confocal microscopy, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone vascular canal densities, bone porosity, and carbonate and phosphate content of bone composition in eight samples extracted from adult Talasiu males and females dated to 2650 BP. Compared to males, samples from females had fewer vascular canals, lower carbonate and phosphate content, and higher bone porosity. Although both sexes showed evidence of trabecularised cortical bone, it was more widespread in females (35.5%) than males (15.8%). Our data suggest experiences of advanced bone resorption, possibly as a result of osteoporosis. This provides first evidence for microscopic bone loss in a sample of archaeological humans from a Pacific population widely afflicted by metabolic conditions today.