Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Immunol ; 9(94): eadk0092, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579014

RESUMEN

The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.


Asunto(s)
Linfocitos B , Inmunoglobulina G , Proteínas de la Membrana , Animales , Ratones , Centro Germinal , Inmunoglobulina G/metabolismo , Inmunoglobulina M/metabolismo , Transducción de Señal , Proteínas de la Membrana/metabolismo
2.
Biomater Adv ; 141: 213134, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36191540

RESUMEN

The behavior of cells and tissues in vivo is determined by the integration of multiple biochemical and mechanical signals. Of the mechanical signals, stretch has been studied for decades and shown to contribute to pathophysiological processes. Several different stretch devices have been developed for in vitro investigations of cell stretch. In this work, we describe a new 3D-printed uniaxial stretching device for studying cell response to rapid deformation. The device is a bistable compliant mechanism holding two equilibrium states-an unstretched and stretched configuration-without the need of an external actuator. Furthermore, it allows multiple simultaneous measurements of different levels of stretch on a single substrate and is compatible with standard immunofluorescence imaging of fixed cells as well as live-cell imaging. To demonstrate the effectiveness of the device to stretch cells, a test case using aligned myotubes is presented. Leveraging material area changes associated with deformation of the substrate, changes in nuclei density provided evidence of affine deformation between cells and substrate. Furthermore, intranuclear deformations were also assessed and shown to deform non-affinely. As a proof-of-principle of the use of the device for mechanobiological studies, we uniaxially stretched aligned healthy and dystrophic myotubes that displayed different passive mechanical responses, consistent with previous literature in the field. We also identified a new feature in the mechanoresponse of dystrophic myotubes, which is of potential interest for identifying the diseased cells based on a quick mechanical readout. While some applications of the device for elucidating passive mechanical responses are demonstrated, the simplicity of the device allows it to be potentially used for other modes of deformation with little modifications.

3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33419925

RESUMEN

Affinity maturation depends on how efficiently germinal centers (GCs) positively select B cells in the light zone (LZ). Positively selected GC B cells recirculate between LZs and dark zones (DZs) and ultimately differentiate into plasmablasts (PBs) and memory B cells (MBCs). Current understanding of the GC reaction presumes that cMyc-dependent positive selection of LZ B cells is a competitive affinity-dependent process; however, this cannot explain the production of GC-derived lower-affinity MBCs or retention of GC B cells with varied affinities. Here, by combining single-cell/bulk RNA sequencing and flow cytometry, we identified and characterized temporally and functionally distinct positively selected cMyc+ GC B cell subpopulations. cMyc+ LZ B cell subpopulations enriched with either higher- or lower-affinity cells diverged soon after permissive positive selection. The former subpopulation contained PB precursors, whereas the latter comprised less proliferative MBC precursors and future DZ entrants. The overall affinity of future DZ entrants was enhanced in the LZ through preferential proliferation of higher-affinity cells. Concurrently, lower-affinity cells were retained in GCs and protected from apoptosis. These findings redefine positive selection as a dynamic process generating three distinct B cell fates and elucidate how positive selection ensures clonal diversity for broad protection.


Asunto(s)
Linfocitos B/metabolismo , Centro Germinal/inmunología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Femenino , Humanos , Ganglios Linfáticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Plasmáticas , Receptores de Antígenos de Linfocitos B/genética
4.
J Exp Med ; 217(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32407433

RESUMEN

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.


Asunto(s)
Linfocitos B/citología , Diferenciación Celular , Centro Germinal/citología , Memoria Inmunológica , Animales , Linfocitos B/metabolismo , Ciclo Celular/genética , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citidina Desaminasa/metabolismo , Ratones Noqueados , Unión Proteica , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba/genética
5.
Cell Cycle ; 13(11): 1717-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24675889

RESUMEN

In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.


Asunto(s)
Crisis Blástica/metabolismo , Diferenciación Celular/inmunología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T/inmunología , Animales , Islas de CpG/genética , Metilación de ADN/genética , Cartilla de ADN/genética , Progresión de la Enfermedad , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Cell Cycle ; 10(20): 3473-86, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22031225

RESUMEN

The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease.


Asunto(s)
Linfocitos B/fisiología , Diferenciación Celular/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Transducción de Señal/fisiología , Factores de Edad , Aneuploidia , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA