Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ACS Chem Neurosci ; 10(6): 2890-2902, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31017387

RESUMEN

Hereditary demyelinating neuropathies linked to peripheral myelin protein 22 (PMP22) involve the disruption of normal protein trafficking and are therefore relevant targets for chaperone therapy. Using a small molecule HSP90 inhibitor, EC137, in cell culture models, we previously validated the chaperone pathway as a viable target for therapy development. Here, we tested five commercially available inhibitors of HSP90 and identified BIIB021 and AUY922 to support Schwann cell viability and enhance chaperone expression. AUY922 showed higher efficacy, compared to BIIB021, in enhancing myelin synthesis in dorsal root ganglion explant cultures from neuropathic mice. For in vivo testing, we randomly assigned 2-3 month old C22 and 6 week old Trembler J (TrJ) mice to receive two weekly injections of either vehicle or AUY922 (2 mg/kg). By the intraperitoneal (i.p.) route, the drug was well-tolerated by all mice over the 5 month long study, without influence on body weight or general grooming behavior. AUY922 improved the maintenance of myelinated nerves of both neuropathic models and attenuated the decline in rotarod performance and peak muscle force production in C22 mice. These studies highlight the significance of proteostasis in neuromuscular function and further validate the HSP90 pathway as a therapeutic target for hereditary neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Fibras Nerviosas Mielínicas/efectos de los fármacos , Resorcinoles/farmacología , Animales , Axones/efectos de los fármacos , Axones/patología , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Fibras Nerviosas Mielínicas/patología
2.
Muscle Nerve ; 57(4): 664-671, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29023846

RESUMEN

INTRODUCTION: Patients with hereditary peripheral neuropathies exhibit characteristic deformities of the hands and feet and have difficulty ambulating. To examine to what extent neuropathic animals recapitulate these deficits, we studied trembler J (TrJ) mice, which model early-onset demyelinating neuropathy. METHODS: A cohort of 4-month-old female wild type and neuropathic mice were evaluated for locomotor measurements, neuromuscular function, and skeletal muscle proteolysis and morphometry. RESULTS: Utilizing the DigiGait imaging system, we identified pronounced alterations in forepaw and hindpaw angles and a decrease in hindpaw area on the treadmill in neuropathic rodents. Torque production by the tibialis anterior (TA) muscle was significantly weakened and was paralleled by a decrease in myofiber cross-sectional area and an increase in muscle tissue proteolysis. DISCUSSION: Our findings in TrJ mice reflect the phenotypic presentation of the human neuropathy in which patients exhibit weakness of the TA muscle resulting in foot drop and locomotor abnormalities. Muscle Nerve 57: 664-671, 2018.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/fisiopatología , Locomoción/fisiología , Músculo Esquelético/fisiopatología , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Modelos Animales de Enfermedad , Femenino , Análisis de la Marcha , Neuropatía Hereditaria Motora y Sensorial/genética , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Ratones , Proteínas de la Mielina/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Fenotipo , Torque
3.
Mol Ther Methods Clin Dev ; 7: 42-49, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29018835

RESUMEN

The development of therapeutic clinical trials for glycogen storage disorders, including Pompe disease, has called for non-invasive and objective biomarkers. Glycogen accumulation can be measured in vivo with 13C MRS. However, clinical implementation remains challenging due to low signal-to-noise. On the other hand, the buildup of glycolytic intermediates may be detected with 31P MRS. We sought to identify new biomarkers of disease progression in muscle using 13C/31P MRS and 1H HR-MAS in a mouse model of Pompe disease (Gaa-/-). We evaluated the sensitivity of these MR biomarkers in vivo after treatment using an adeno-associated virus vector 2/9 encoding hGAA driven by the desmin promotor. 31P MRS showed significantly elevated phosphomonoesters (PMEs) in Gaa-/- compared to control at 2 (0.06 ± 0.02 versus 0.03 ± 0.01; p = 0.003), 6, 12, and 18 months of age. Correlative 1H HR-MAS measures in intact gastrocnemius muscles revealed high glucose-6-phosphate (G-6-P). After intramuscular AAV injections, glycogen, PME, and G-6-P were decreased within normal range. The changes in PME levels likely partly resulted from changes in G-6-P, one of the overlapping phosphomonoesters in the 31P MR spectra in vivo. Because 31P MRS is inherently more sensitive than 13C MRS, PME levels have greater potential as a clinical biomarker and should be considered as a complementary approach for future studies in Pompe patients.

4.
Hum Gene Ther ; 27(1): 43-59, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26603344

RESUMEN

Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa(-/-) mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders.


Asunto(s)
Terapia Genética , Glucano 1,4-alfa-Glucosidasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Tolerancia Inmunológica/genética , Animales , Dependovirus/genética , Dependovirus/inmunología , Glucano 1,4-alfa-Glucosidasa/deficiencia , Enfermedad del Almacenamiento de Glucógeno Tipo II/inmunología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
5.
Ann Neurol ; 78(2): 222-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25925726

RESUMEN

OBJECTIVE: We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ-related measures of the tibialis anterior muscles of young-, mid-, and late-stage alpha-glucosidase (GAA)-deficient mice. METHODS: We performed intramuscular injection of an adeno-associated virus (AAV)9 vector expressing GAA (AAV9-hGAA) into the tibialis anterior muscle of Gaa(-/-) mice at early, mid, and severe pathological time points. We analyzed expression of NMJ-related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. RESULTS: Our data demonstrate that AAV9-hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. INTERPRETATION: Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222-234.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Fuerza Muscular/fisiología , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , ARN Mensajero/metabolismo , Receptores Colinérgicos/genética , alfa-Glucosidasas/genética , Animales , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Miembro Posterior , Inyecciones Intramusculares , Contracción Isométrica , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Receptores Colinérgicos/metabolismo , Factores de Tiempo
6.
Neurobiol Dis ; 70: 224-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25014022

RESUMEN

Charcot--Marie-Tooth disease type 1A (CMT1A) is a hereditary peripheral neuropathy characterized by progressive demyelination and distal muscle weakness. Abnormal expression of peripheral myelin protein 22 (PMP22) has been linked to CMT1A and is modeled by Trembler J (TrJ) mice, which carry the same leucine to proline substitution in PMP22 as affected pedigrees. Pharmacologic modulation of autophagy by rapamycin in neuron-Schwann cell explant cultures from neuropathic mice reduced PMP22 aggregate formation and improved myelination. Here we asked whether rapamycin administration by food supplementation, or intraperitoneal injection, could alleviate the neuropathic phenotype of affected mice and improve neuromuscular performance. Cohorts of male and female wild type (Wt) and TrJ mice were assigned to placebo or rapamycin treatment starting at 2 or 4months of age and tested monthly on the rotarod. While neither long-term feeding (8 or 10months) on rapamycin-enriched diet, or short-term injection (2months) of rapamycin improved locomotor performance of the neuropathic mice, both regimen benefited peripheral nerve myelination. Together, these results indicate that while treatment with rapamycin benefits the myelination capacity of neuropathic Schwann cells, this intervention does not improve neuromuscular function. The observed outcome might be the result of the differential response of nerve and skeletal muscle tissue to rapamycin.


Asunto(s)
Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Células de Schwann/efectos de los fármacos , Sirolimus/administración & dosificación , Animales , Enfermedad de Charcot-Marie-Tooth , Estudios de Cohortes , Suplementos Dietéticos , Femenino , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Mutación , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/fisiología , Neuronas/patología , Neuronas/fisiología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Distribución Aleatoria , Prueba de Desempeño de Rotación con Aceleración Constante , Células de Schwann/patología , Células de Schwann/fisiología , Técnicas de Cultivo de Tejidos
7.
Hum Mol Genet ; 22(20): 4043-52, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23727837

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA.


Asunto(s)
Proteína Coatómero/metabolismo , Dipéptidos/metabolismo , Exones , Modelos Biológicos , Atrofia Muscular Espinal/patología , Neuritas/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/química , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula/métodos , Línea Celular , Proteína Coat de Complejo I/metabolismo , Dipéptidos/química , Dipéptidos/genética , Humanos , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutación , Neuritas/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
8.
Hum Mol Genet ; 22(4): 729-36, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23175440

RESUMEN

Our fundamental understanding of how several thousand diverse RNAs are recognized in the soma, sorted, packaged, transported and localized within the cell is fragmentary. The COPa and COPb proteins of the coatomer protein I (COPI) vesicle complex were reported to interact with specific RNAs and represent a candidate RNA sorting and transport system. To determine the RNA-binding profile of Golgi-derived COPI in neuronal cells, we performed formaldehyde-linked RNA immunoprecipitation, followed by high-throughput sequencing, a process we term FLRIP-Seq (FLRIP, formaldehyde-cross-linked immunoprecipitation). We demonstrate that COPa co-immunoprecipitates a specific set of RNAs that are enriched in G-quadruplex motifs and fragile X mental retardation protein-associated RNAs and that encode factors that predominantly localize to the plasma membrane and cytoskeleton and function within signaling pathways. These data support the novel function of COPI in inter-compartmental trafficking of RNA.


Asunto(s)
Proteína Coatómero/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Animales , Antígenos de Neoplasias/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Membrana Celular/metabolismo , Proteína Coat de Complejo I/metabolismo , Secuencia de Consenso , Citoesqueleto/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Antígeno Ventral Neuro-Oncológico , Unión Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Transcriptoma
9.
Methods Mol Biol ; 867: 349-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22454072

RESUMEN

Many genetic mutations result in the disruption of (alternative) splicing. Prime examples are the SMN1 and SMN2 genes: a silent mutation in SMN2 leads to the skipping of the constitutive exon 7 in the majority of SMN2 transcripts, while this exon is generally included in SMN1 transcripts. Lack of SMN is embryonic lethal and loss of SMN1 genes leads to a severe decrease in SMN protein and is associated with spinal muscular atrophy. There are proteins and drugs that can chance alternative splicing events, e.g. increase the inclusion of exon 7 in SMN2. This chapter describes mini-genes and methods that can be employed to screen for candidate proteins and drugs.


Asunto(s)
Empalme Alternativo , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Empalme Alternativo/efectos de los fármacos , Animales , Línea Celular , Clonación Molecular/métodos , ADN/genética , ADN/aislamiento & purificación , ADN Complementario/genética , Humanos , Atrofia Muscular Espinal/tratamiento farmacológico , Reacción en Cadena de la Polimerasa/métodos , ARN/genética , ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transfección
10.
Neuromolecular Med ; 13(1): 77-87, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21082361

RESUMEN

The childhood disorder spinal muscular atrophy (SMA) is caused by reduced expression of the survival motor neuron (SMN) protein. SMN is a multifunctional protein that has been implicated in the production, processing and transport of RNA and ribonucleoproteins (RNPs). Within the nucleus, SMN is predominantly targeted to Cajal bodies (CB), which are involved in the maturation and processing of several subclasses of RNPs. Here, we show that the SMN exon 2b-encoded domain (SMN2b) is independently sufficient to mediate CB targeting, but that the resulting bodies are less dynamic than those containing full-length SMN protein. We also show that while two SMN proteins harbouring SMA-causing point mutations (A2G and S262I) are efficiently targeted to CBs, they also display reduced nuclear movement.


Asunto(s)
Cuerpos Enrollados/metabolismo , Mutación , Proteínas del Complejo SMN/genética , Niño , Exones , Células HeLa , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Complejo SMN/metabolismo
11.
J Mol Biol ; 401(5): 681-9, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20620147

RESUMEN

Childhood spinal muscular atrophy is caused by a reduced expression of the survival motor neuron (SMN) protein. SMN has been implicated in the axonal transport of beta-actin mRNA in both primary and transformed neuronal cell lines, and loss of this function could account, at least in part, for spinal muscular atrophy onset and pathological specificity. Here we have utilised a targeted screen to identify mRNA associated with SMN, Gemin2 and Gemin3 in the cytoplasm of a human neuroblastoma cell line, SHSY5Y. Importantly, we have provided the first direct evidence that beta-actin mRNA is present in SMN cytoplasmic complexes in SHSY5Y cells.


Asunto(s)
Actinas/genética , Citoplasma/metabolismo , Proteína 20 DEAD-Box/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Axones , Línea Celular Tumoral , Humanos
12.
Biochem Biophys Res Commun ; 397(3): 479-85, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20515655

RESUMEN

Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is a ubiquitously expressed house keeping protein that is involved in RNA production and processing. However, although SMN is expressed in every cell type, only the lower motor neurons of the spinal cord are degraded in SMA. It remains unclear why this is the case. Recently, SMN has been linked to the axonal transport of beta-actin mRNA from the cell body down to the growth cones. beta-Actin is transported actively in neurite granules (NGs). However, it remains unclear which known SMN-binding partners are present in these SMN-NGs. To address this we have analysed SMN-NGs in a human neuronal cell line, SH-SY5Y, using antibodies against the majority of reported SMN-binding partners, including: Gemin2, Gemin3, Gemin4, Gemin5, Gemin6, Gemin7, Sm core proteins, fibrillarin, EWS, PFNII, Unrip and ZPR1. The obtained results highlight the metamorphic nature of the SMN complex, suggesting that not all the "core" SMN-binding proteins are transported in SMN-NGs.


Asunto(s)
Cuerpos Enrollados/metabolismo , Atrofia Muscular Espinal/metabolismo , Neuritas/metabolismo , Proteínas del Complejo SMN/metabolismo , Vesículas Transportadoras/metabolismo , Preescolar , Citoplasma/metabolismo , Células HeLa , Humanos , Transporte de Proteínas
13.
Biochem Biophys Res Commun ; 394(1): 211-6, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188701

RESUMEN

Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is expressed in every cell type, but it is predominantly the lower motor neurones of the spinal cord that degenerate in SMA. SMN has been linked to the axonal transport of beta-actin mRNA, a breakdown in which could trigger disease onset. It is known that SMN is present in transport ribonucleoproteins (RNPs) granules that also contain Gemin2 and Gemin3. To further characterise these granules we have performed live cell imaging of GFP-tagged SMN, GFP-Gemin2, GFP-Gemin3, GFP-Gemin6 and GFP-Gemin7. In all, we have made two important observations: (1) SMN granules appear metamorphic; and (2) the SMN-Gemin complex(es) appears to localise to two distinct subsets of bodies in neurites; stationary bodies and smaller dynamic bodies. This study provides an insight into the neuronal function of the SMN complex.


Asunto(s)
Neuritas/metabolismo , Proteínas del Complejo SMN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Vesículas Transportadoras/metabolismo , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Atrofias Musculares Espinales de la Infancia/metabolismo
14.
J Biochem ; 147(6): 885-93, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20211855

RESUMEN

The Ewing's sarcoma (EWS) protein is a ubiquitously expressed RNA chaperone. The EWS protein localizes predominantly to the nucleus. Previous reports have suggested that the EWS protein is capable of dimerizing. However, to date this has not been confirmed. Here, using a novel panel of recombinant proteins, we have performed an in vitro biomolecular interaction analysis of the EWS protein. We have demonstrated that all three arginine-glycine-glycine (RGG) motifs are capable of binding directly to the survival motor neuron protein, a Tudor domain containing EWS binding partner. We have also confirmed EWS is capable of self-associating, and we have mapped this binding domain to the RGG motifs. We have also found that self-association may be required for EWS nuclear import. This is the first direct evidence of RGG domains being involved in self-association and has implications on all RGG-containing proteins.


Asunto(s)
Proteínas del Tejido Nervioso/química , Multimerización de Proteína , Proteína EWS de Unión a ARN/química , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Arginina/metabolismo , Sitios de Unión , Cromatografía en Gel , Glicina/metabolismo , Células HeLa , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteína EWS de Unión a ARN/aislamiento & purificación , Proteínas Recombinantes , Resonancia por Plasmón de Superficie , Proteína 1 para la Supervivencia de la Neurona Motora
15.
Biochem Biophys Res Commun ; 390(4): 1197-201, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19879242

RESUMEN

The Ewing Sarcoma (EWS) protein is a ubiquitously expressed RNA processing factor that localises predominantly to the nucleus. However, the mechanism through which EWS enters the nucleus remains unclear, with differing reports identifying three separate import signals within the EWS protein. Here we have utilized a panel of truncated EWS proteins to clarify the reported nuclear localisation signals. We describe three C-terminal domains that are important for efficient EWS nuclear localization: (1) the third RGG-motif; (2) the last 10 amino acids (known as the PY-import motif); and (3) the zinc-finger motif. Although these three domains are involved in nuclear import, they are not independently capable of driving the efficient import of a GFP-moiety. However, collectively they form a complex tripartite signal that efficiently drives GFP-import into the nucleus. This study helps clarify the EWS import signal, and the identification of the involvement of both the RGG- and zinc-finger motifs has wide reaching implications.


Asunto(s)
Neoplasias Óseas/metabolismo , Núcleo Celular/metabolismo , Señales de Localización Nuclear , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/metabolismo , Dedos de Zinc , Transporte Activo de Núcleo Celular , Citoplasma/metabolismo , Análisis Mutacional de ADN , Humanos , Mutación , Señales de Clasificación de Proteína , Proteína EWS de Unión a ARN/genética
16.
Biochem Biophys Res Commun ; 375(1): 33-7, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18675250

RESUMEN

Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex.


Asunto(s)
Señales de Localización Nuclear/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidad Menor , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora
17.
Hum Mol Genet ; 16(19): 2349-58, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17635841

RESUMEN

The childhood autosomal recessive disorder spinal muscular atrophy (SMA) is caused by mutations in the survival motor neuron (SMN) gene. SMN localizes diffusely in the cytoplasm and in distinct nuclear structures called Cajal bodies. Cajal bodies are believed to be the storage and processing sites of several ribonucleoproteins. Here, using a novel panel of SMN exon deletion constructs, we report a systematic analysis of internal targeting domains in the SMN protein. We demonstrate that the peptides encoded by exons 2b, 3 and 6 perform an integral role in the cellular targeting of SMN. In addition, we identify a nine amino acid motif within the highly conserved sequences of the exon 2b encoded domain that mediates Cajal body targeting and self-association. Deletion of this domain dramatically affects SMN activity and results in a dominant-negative clone. These results identify critical domains within the SMN protein and have an impact on our understanding of the SMN protein with regards to SMA as well as cellular biology.


Asunto(s)
Cuerpos Enrollados/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cuerpos Enrollados/genética , Cuerpos Enrollados/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Exones/genética , Células HeLa , Humanos , Inmunohistoquímica , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA