Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Fungal Genet Biol ; 172: 103896, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663635

RESUMEN

Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.


Asunto(s)
Calcio , Aparato de Golgi , Manganeso , Nicotiana , Saccharomyces cerevisiae , Nicotiana/genética , Manganeso/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostasis , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Transporte Biológico/genética
2.
J Hazard Mater ; 436: 129138, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35617731

RESUMEN

The aln-3 mutant overaccumulating allantoin and respective wild type (WT) strain of Arabidopsis thaliana were exposed to cadmium (Cd) or mercury (Hg) with or without nitric oxide (NO) donor (sodium nitroprusside, SNP) to study cross-talk, metabolic and oxidative changes between these nitrogen sources (organic vs. inorganic). The aln-3 accumulated over 10-fold more allantoin than WT with the effect of Cd and Hg differing in leaf and root tissue: aln-3 contained more ascorbic acid and phytochelatins when treated with Cd or Hg and more Cd in both organs. SNP depleted leaf Cd and root Hg accumulation in aln3 but had a positive impact on the amount of metabolites typically in WT plants, indicating potentially negative relation between allantoin and NO. In agreement, aln-3 roots showed lower NO signals in control or metal treatments, but higher ROS signal, and SNP had more pronounced impact in WT roots. Flavonol glycosides were more abundant in aln-3 and were affected more by metals than by SNP. Malate was the most affected Krebs acid with strong reaction to SNP and Hg treatment. Data indicate that allantoin overaccumulation influences the accumulation of specific metabolites but nitric oxide has a greater impact on the metabolite profile in WT.


Asunto(s)
Arabidopsis , Mercurio , Alantoína/metabolismo , Alantoína/farmacología , Arabidopsis/metabolismo , Cadmio/metabolismo , Mercurio/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Raíces de Plantas/metabolismo
3.
Elife ; 112022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35390271

RESUMEN

Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of somatic cell reprogramming, which suggests full reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first "maturation phase transient reprogramming" (MPTR) method, where reprogramming factors are selectively expressed until this rejuvenation point then withdrawn. Applying MPTR to dermal fibroblasts from middle-aged donors, we found that cells temporarily lose and then reacquire their fibroblast identity, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome was rejuvenated to a similar extent, including H3K9me3 levels and the DNA methylation ageing clock. The magnitude of rejuvenation instigated by MPTR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Reprogramación Celular/genética , Metilación de ADN , Epigenoma , Epigenómica/métodos , Fibroblastos , Humanos , Persona de Mediana Edad
6.
Virulence ; 12(1): 2327-2340, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34515618

RESUMEN

Plant pathogen effector proteins are key to pathogen virulence. In susceptible host Brassicas, the clubroot pathogen, Plasmodiophora brassicae, induces the production of nutrient-sink root galls, at the site of infection. Among a list of 32 P. brassiae effector candidates previously reported by our group, we identified SSPbP53 as a putative apoplastic cystatin-like protein highly expressed during the secondary infection. Here we found that SSPbP53 encoding gene is conserved among several P. brassicae pathotypes and that SSPbP53 is an apoplastic protein able to directly interact with and inhibit cruciferous papain-like cysteine proteases (PLCPs), specifically Arabidopsis XYLEM CYSTEINE PEPTIDASE 1 (AtXCP1). The severity of clubroot disease is greatly reduced in the Arabidopsis xcp1 null mutant (AtΔxcp1) after infection with P. brassicae resting spores, indicating that the interaction of P. brassicae SSPbP53 with XCP1 is important to clubroot susceptibility. SSPbP53 is the first cystatin-like effector identified and characterized for a plant pathogenic protist.


Asunto(s)
Arabidopsis , Proteasas de Cisteína , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plasmodiophorida , Arabidopsis/genética , Arabidopsis/microbiología , Proteasas de Cisteína/genética , Plasmodiophorida/patogenicidad
7.
Front Microbiol ; 12: 651279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276588

RESUMEN

Plasmodiophora brassicae is a devastating obligate, intracellular, biotrophic pathogen that causes clubroot disease in crucifer plants. Disease progression is regulated by effector proteins secreted by P. brassicae. Twelve P. brassicae putative effectors (PbPEs), expressed at various stages of disease development [0, 2, 5, 7, 14, 21, and 28 days post inoculation (DPI)] in Arabidopsis and localizing to the plant endomembrane system, were studied for their roles in pathogenesis. Of the 12 PbPEs, seven showed an inhibitory effect on programmed cell death (PCD) as triggered by the PCD inducers, PiINF1 (Phytophthora infestans Infestin 1) and PiNPP1 (P. infestans necrosis causing protein). Showing the strongest level of PCD suppression, PbPE15, a member of the 2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily and with gene expression during later stages of infection, appears to have a role in tumorigenesis as well as defense signaling in plants. PbPE13 produced an enhanced PiINF1-induced PCD response. Transient expression, in Nicotiana benthamiana leaves of these PbPEs minus the signal peptide (SP) (Δsp PbPEGFPs), showed localization to the endomembrane system, targeting the endoplasmic reticulum (ER), Golgi bodies and nucleo-cytoplasm, suggesting roles in manipulating plant cell secretion and vesicle trafficking. Δsp PbPE13GFP localized to plasma membrane (PM) lipid rafts with an association to plasmodesmata, suggesting a role at the cell-to-cell communication junction. Membrane relocalization of Δsp PbPE13GFP, triggered by flagellin N-terminus of Pseudomonas aeruginosa (flg22 - known to elicit a PAMP triggered immune response in plants), supports its involvement in raft-mediated immune signaling. This study is an important step in deciphering P. brassicae effector roles in the disruption of plant immunity to clubroot disease.

8.
Behav Processes ; 188: 104414, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33945865

RESUMEN

Animals avoid predator attack in different ways; some carry defensive structures to reduce predation, with the classic example being hermit crabs and their use of a mollusc shell as a portable refugium. During shell selection, various shell characteristics are investigated by the crab to determine their suitability. Here we consider the role of visual cues. Previous research suggests that some hermit crabs are more likely to initially choose a conspicuous shell but also to move to backgrounds against which they are less conspicuous, suggesting a short-term/long-term trade-off. Across experiments in which we manipulated shell and background colour, we show initially that Pagurus bernhardus prefer black shells over white but this preference was lost in the absence of visual cues. We then show that the strength of preference was dependent on background colour. We repeated this last experiment with red and yellow shells against red or yellow backgrounds to investigate whether this preference extended to chromatic hues. A preference for darker (red) shells was expressed, but preference alteration with background was not observed. P. bernhardus therefore discriminate between shells in terms of shell and background colour, and discrimination may be rooted in a preference for darker shaded shells.


Asunto(s)
Anomuros , Animales , Señales (Psicología)
9.
J Fish Biol ; 98(1): 6-16, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32951198

RESUMEN

Variation in circulus spacing on the scales of wild Atlantic salmon is indicative of changes in body length growth rate. We analyzed scale circulus spacing during the post-smolt growth period for adult one sea-winter salmon (n = 1947) returning to Scotland over the period 1993-2011. The growth pattern of the scales was subjectively and visually categorized according to the occurrence and zonal sequence of three intercirculus spacing criteria ("Slow", "Fast" and "Check" zones). We applied hierarchical time-series cluster analysis to the empirical circulus spacing data, followed by post hoc analysis of significant changes in growth patterns within the 20 identified clusters. Temporal changes in growth pattern frequencies showed significant correlation with sea surface temperature anomalies during the early months of the post-smolt growth season and throughout the Norwegian Sea. Since the turn of the millennium, we observed (a) a marked decrease in the occurrence of continuous Fast growth; (b) increased frequencies of fish showing an extended period of initially Slow growth; and (c) the occurrence of obvious growth Checks or hiatuses. These changes in post-smolt growth pattern were manifest also in decreases in the mean body length attained by the ocean midwinter, as sea surface temperatures have risen.


Asunto(s)
Calor , Salmo salar/crecimiento & desarrollo , Migración Animal , Animales , Océano Atlántico , Ríos , Escocia , Estaciones del Año
10.
Nat Commun ; 11(1): 3506, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665538

RESUMEN

Acute myeloid leukemia (AML) is characterised by a series of genetic and epigenetic alterations that result in deregulation of transcriptional networks. One understudied source of transcriptional regulators are transposable elements (TEs), whose aberrant usage could contribute to oncogenic transcriptional circuits. However, the regulatory influence of TEs and their links to AML pathogenesis remain unexplored. Here we identify six endogenous retrovirus (ERV) families with AML-associated enhancer chromatin signatures that are enriched in binding of key regulators of hematopoiesis and AML pathogenesis. Using both locus-specific genetic editing and simultaneous epigenetic silencing of multiple ERVs, we demonstrate that ERV deregulation directly alters the expression of adjacent genes in AML. Strikingly, deletion or epigenetic silencing of an ERV-derived enhancer suppresses cell growth by inducing apoptosis in leukemia cell lines. This work reveals that ERVs are a previously unappreciated source of AML enhancers that may be exploited by cancer cells to help drive tumour heterogeneity and evolution.


Asunto(s)
Cromatina/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Línea Celular , Cromatina/genética , Elementos Transponibles de ADN/genética , Retrovirus Endógenos/genética , Epigénesis Genética/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Genoma Humano/genética , Humanos , Secuencias Repetitivas Esparcidas/genética
11.
J Eukaryot Microbiol ; 67(3): 337-351, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31925980

RESUMEN

Plasmodiophora brassicae (Wor.) is an obligate intracellular plant pathogen affecting Brassicas worldwide. Identification of effector proteins is key to understanding the interaction between P. brassicae and its susceptible host plants. To date, there is very little information available on putative effector proteins secreted by P. brassicae during a secondary infection of susceptible host plants, resulting in root gall production. A bioinformatics pipeline approach to RNA-Seq data from Arabidopsis thaliana (L.) Heynh. root tissues at 17, 20, and 24 d postinoculation (dpi) identified 32 small secreted P. brassicae proteins (SSPbPs) that were highly expressed over this secondary infection time frame. Functional signal peptides were confirmed for 31 of the SSPbPs, supporting the accuracy of the pipeline designed to identify secreted proteins. Expression profiles at 0, 2, 5, 7, 14, 21, and 28 dpi verified the involvement of some of the SSPbPs in secondary infection. For seven of the SSPbPs, a functional domain was identified using Blast2GO and 3D structure analysis and domain functionality was confirmed for SSPbP22, a kinase localized to the cytoplasm and nucleus.


Asunto(s)
Arabidopsis/parasitología , Perfilación de la Expresión Génica/métodos , Plasmodiophorida/genética , Proteínas Protozoarias/genética , Regulación hacia Arriba , Modelos Moleculares , Raíces de Plantas/parasitología , Plasmodiophorida/metabolismo , Conformación Proteica , Dominios Proteicos , Señales de Clasificación de Proteína , Proteínas Protozoarias/química , Análisis de Secuencia de ARN
12.
Elife ; 82019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31012843

RESUMEN

Transposable elements (TEs) are thought to have helped establish gene regulatory networks. Both the embryonic and extraembryonic lineages of the early mouse embryo have seemingly co-opted TEs as enhancers, but there is little evidence that they play significant roles in gene regulation. Here we tested a set of long terminal repeat TE families for roles as enhancers in mouse embryonic and trophoblast stem cells. Epigenomic and transcriptomic data suggested that a large number of TEs helped to establish tissue-specific gene expression programmes. Genetic editing of individual TEs confirmed a subset of these regulatory relationships. However, a wider survey via CRISPR interference of RLTR13D6 elements in embryonic stem cells revealed that only a minority play significant roles in gene regulation. Our results suggest that a subset of TEs are important for gene regulation in early mouse development, and highlight the importance of functional experiments when evaluating gene regulatory roles of TEs.


Much of what is known about genetics has come from studying only a tiny fraction of the genome's sequence, the part that primarily codes for proteins. But the genome has many other features outside these regions, some of which play an important biological role. Transposable elements ­ repetitive sequences that are present in many species ­ make up around half of the mouse genome. They are 'selfish' elements, in that the spread of them within the genome does not necessarily benefit the host organism. But sometimes transposable elements can be 'domesticated', and used to the host's advantage. For example, transposable elements can generate new genes. In other cases, their non-coding sequences can regulate the activity of other nearby genes or even those elsewhere in the genome. It remains unclear to what extent transposable elements have shaped genome regulation throughout evolution. One idea is that the spread of transposable elements can help to establish large regulatory networks ­ whereby many genes are collectively regulated to produce a specific output. But it has not been fully explored how effective transposable elements are at regulating gene expression. Now, Todd et al. investigate whether particular transposable elements, that are suspected to boost the activity of other genes, are essential for normal gene expression in early mouse development. Todd et al. genetically edited stem cells from the inner and outer layer of the early mouse embryo to find transposable elements that promote gene expression. Whilst some transposable elements were found to be important for gene regulation, not all of the candidates tested were needed to maintain expression levels. To widen the search, several transposable elements were turned off simultaneously by compacting specific stretches of DNA so that they could no longer be activated. When 34 transposable elements were inactivated at once, it emerged that only three transposable elements had a significant impact on gene expression. These findings suggest that whether or not a given transposable element regulates gene expression cannot be predicted solely from profiling the structure and sequence of the genome. This highlights why it is important to interrogate the effect transposable elements have ona gene's role within a cell. Transposable elements are largely disregarded in genomics due to technical difficulties in analysing these repetitive stretches of DNA. But characteristic variations within a population may in part be driven by differences in these parts of the genome, which may also be implicated in diseases such as cancer. Identifying which transposable elements are important for driving gene expression, and linking their actions to specific traits could aid the discovery of important genetic variants.


Asunto(s)
Elementos Transponibles de ADN , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Trofoblastos/fisiología , Animales , Ratones
13.
Plant Physiol Biochem ; 135: 441-449, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30473421

RESUMEN

Allantoin, an important intermediate of ureide metabolism, has been the subject of investigation recently due to its dual function in nitrogen recycling and abiotic stress response in plants. Allantoin appears to be the dominant ureide accumulating in response to different abiotic stresses, and mutants containing elevated allantoin concentrations exhibit a stress-tolerant phenotype due to limited reactive oxygen species (ROS) generation. Here we describe the involvement of allantoin in stress response and attempt to explain the regulatory mechanism(s) underlying allantoin function in plants. Growth of wild type Col-0 seedlings in the presence of exogenous allantoin improved root elongation in response to Cd treatment. Allantoin treatment of Col-0 seeds increases superoxide dismutase activity causing an enhanced seed germination and seedling growth following Cd exposure. Additionally, allantoinase-overexpressed (ALNox) lines, with lower levels of allantoin, exhibited more susceptibility to Cd treatment than Col-0 Arabidopsis, implying that there is a positive correlation between allantoin concentration and Cd resistance in plants. Growing ABA-insensitive (abi) mutants on allantoin-containing media and comparison between abi mutants and their wild-type backgrounds demonstrated that the potential regulatory function of allantoin does not require ABA at germination but may be ABA-dependent at later stages of seedling growth, suggesting a potential crosstalk between allantoin-mediated stress response and ABA signalling pathway in plants.


Asunto(s)
Alantoína/metabolismo , Arabidopsis/metabolismo , Cadmio/toxicidad , Alantoína/análisis , Alantoína/farmacología , Alantoína/fisiología , Antioxidantes/metabolismo , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Germinación/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
14.
J Fish Biol ; 94(1): 183-186, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30443940

RESUMEN

Using tagged and recaptured Atlantic salmon Salmo salar (n = 106) the present analysis shows that the most commonly applied linear back-calculation method for estimating past length, the Dahl-Lea method, resulted in overestimation of the length of large smolts and underestimation of small smolts. A correction equation (y = 0.53x + 6.23) for estimating true smolt length (y) from lengths back-calculated from adult scale measures (x) to account for these systematic discrepancies is proposed.


Asunto(s)
Modelos Biológicos , Salmo salar/crecimiento & desarrollo , Migración Animal , Animales , Ríos , Salmo salar/anatomía & histología
16.
Nat Commun ; 9(1): 4189, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305613

RESUMEN

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.


Asunto(s)
Linaje de la Célula , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Ratones Endogámicos ICR , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
17.
Virulence ; 9(1): 1344-1353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30146948

RESUMEN

Clubroot is an economically important disease affecting Brassica plants worldwide. Plasmodiophora brassicae is the protist pathogen associated with the disease, and its soil-borne obligate parasitic nature has impeded studies related to its biology and the mechanisms involved in its infection of the plant host. The identification of effector proteins is key to understanding how the pathogen manipulates the plant's immune response and the genes involved in resistance. After more than 140 years studying clubroot and P. brassicae, very little is known about the effectors playing key roles in the infection process and subsequent disease progression. Here we analyze the information available for identified effectors and suggest several features of effector genes that can be used in the search for others. Based on the information presented in this review, we propose a comprehensive bioinformatics pipeline for effector identification and provide a list of the bioinformatics tools available for such.


Asunto(s)
Brassica/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Plasmodiophorida/inmunología , Brassica/inmunología , Biología Computacional , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/inmunología , Plasmodiophorida/patogenicidad , Factores de Transcripción/genética , Transcriptoma
18.
BMC Genomics ; 19(1): 23, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304736

RESUMEN

BACKGROUND: Clubroot is an important disease caused by the obligate parasite Plasmodiophora brassicae that infects the Brassicaceae. As a soil-borne pathogen, P. brassicae induces the generation of abnormal tissue in the root, resulting in the formation of galls. Root infection negatively affects the uptake of water and nutrients in host plants, severely reducing their growth and productivity. Many studies have emphasized the molecular and physiological effects of the clubroot disease on root tissues. The aim of the present study is to better understand the effect of P. brassicae on the transcriptome of both shoot and root tissues of Arabidopsis thaliana. RESULTS: Transcriptome profiling using RNA-seq was performed on both shoot and root tissues at 17, 20 and 24 days post inoculation (dpi) of A. thaliana, a model plant host for P. brassicae. The number of differentially expressed genes (DEGs) between infected and uninfected samples was larger in shoot than in root. In both shoot and root, more genes were differentially regulated at 24 dpi than the two earlier time points. Genes that were highly regulated in response to infection in both shoot and root primarily were involved in the metabolism of cell wall compounds, lipids, and shikimate pathway metabolites. Among hormone-related pathways, several jasmonic acid biosynthesis genes were upregulated in both shoot and root tissue. Genes encoding enzymes involved in cell wall modification, biosynthesis of sucrose and starch, and several classes of transcription factors were generally differently regulated in shoot and root. CONCLUSIONS: These results highlight the similarities and differences in the transcriptomic response of above- and below-ground tissues of the model host Arabidopsis following P. brassicae infection. The main transcriptomic changes in root metabolism during clubroot disease progression were identified. An overview of DEGs in the shoot underlined the physiological changes in above-ground tissues following pathogen establishment and disease progression. This study provides insights into host tissue-specific molecular responses to clubroot development and may have applications in the development of clubroot markers for more effective breeding strategies.


Asunto(s)
Arabidopsis/genética , Arabidopsis/parasitología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/parasitología , Plasmodiophorida , Transcriptoma , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/parasitología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Plant Physiol ; 221: 43-50, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29245127

RESUMEN

Allantoin is a nitrogenous compound derived from purine catabolism that contributes to nitrogen recycling in plants. Accumulation of allantoin in plant tissues and a potential role in protection of plants from abiotic stress conditions has been identified. The present work shows that application of exogenous allantoin increased stress tolerance of Arabidopsis seedlings when germinated on, or subjected to the media containing NaCl. Allantoin-induced tolerance to NaCl stress was associated with decreased production of superoxide and hydrogen peroxide in seedlings. To understand the molecular mechanism, the effect of exogenous allantoin treatment on expression of several stress-related genes was investigated. Exogenous allantoin altered the expression of several antioxidant encoding genes and upregulated the expression of two genes involved in oxidative stress tolerance, SOS1 and RCD1, in the presence or absence of NaCl. Allantoin increased the NaCl tolerance of abscisic acid insensitive mutants, suggesting that it can function independently of abscisic acid signaling. These results provide additional evidence for the role of allantoin in enhancing plants tolerance to oxidative stress.


Asunto(s)
Alantoína/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/efectos adversos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología , Estrés Fisiológico/efectos de los fármacos
20.
Plant Physiol Biochem ; 119: 103-109, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28858669

RESUMEN

Ureides are nitrogen-rich compounds, derived from purine catabolism. A dual role for ureides, and for allantoin in particular, in both nitrogen recycling and the abiotic stress response has been recently identified. Previous work on the effect of allantoin on cadmium (Cd)-exposed Arabidopsis revealed that high concentration of allantoin in allantoinase-negative mutant (aln-3) leaves alleviates Cd toxicity via inducing antioxidant mechanisms in these plants. In the present study, we evaluate whether allantoin has a similar protective role in roots. Both wild type and aln-3 roots contain higher amounts of internal Cd compared to leaves. Likewise, aln-3 roots are more resistant to Cd, reflected in fresh and dry weight, and stimulated antioxidant enzyme activity, including superoxide dismutase (SOD) and catalase (CAT), resulting in lower reactive oxygen species concentration. In contrast with wild-type leaves, high levels of Cd in Col-0 roots reduces transcript abundance of uricase, leading to a significant decline in allantoin level of treated roots at 1000 and 1500 µM CdCl2. This metabolite change is also accompanied by decreasing the activity of antioxidant enzymes (SOD and CAT). Additionally, contrary to wild-type leaves, root genotype has a significant effect on CAT activity under Cd treatment, suggesting the possible different sources of damage and oxidative stress response in these two tissues.


Asunto(s)
Alantoína/farmacología , Arabidopsis/metabolismo , Cadmio/farmacología , Raíces de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Raíces de Plantas/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA