Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Epilepsia Open ; 9(5): 1793-1805, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38980984

RESUMEN

OBJECTIVE: Non-invasive biomarkers have recently shown promise for seizure forecasting in people with epilepsy. In this work, we developed a seizure-day forecasting algorithm based on nocturnal sleep features acquired using a smart shirt. METHODS: Seventy-eight individuals with epilepsy admitted to the Centre hospitalier de l'Université de Montréal epilepsy monitoring unit wore the Hexoskin biometric smart shirt during their stay. The shirt continuously measures electrocardiography, respiratory, and accelerometry activity. Ten sleep features, including sleep efficiency, sleep latency, sleep duration, time spent in non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM), wakefulness after sleep onset, average heart and breathing rates, high-frequency heart rate variability, and the number of position changes, were automatically computed using the Hexoskin sleep algorithm. Each night's features were then normalized using a reference night for each patient. A support vector machine classifier was trained for pseudo-prospective seizure-day forecasting, with forecasting horizons of 16- and 24-h to include both diurnal and nocturnal seizures (24-h) or diurnal seizures only (16-h). The algorithm's performance was assessed using a nested leave-one-patient-out cross-validation approach. RESULTS: Improvement over chance (IoC) performances were achieved for 48.7% and 40% of patients with the 16- and 24-h forecasting horizons, respectively. For patients with IoC performances, the proposed algorithm reached mean IoC, sensitivity and time in warning of 34.3%, 86.0%, and 51.7%, respectively for the 16-h horizon, and 34.2%, 64.4% and 30.2%, respectively, for the 24-h horizon. SIGNIFICANCE: Smart shirt-based nocturnal sleep analysis holds promise as a non-invasive approach for seizure-day forecasting in a subset of people with epilepsy. Further investigations, particularly in a residential setting with long-term recordings, could pave the way for the development of innovative and practical seizure forecasting devices. PLAIN LANGUAGE SUMMARY: Seizure forecasting with wearable devices may improve the quality of life of people living with epilepsy who experience unpredictable, recurrent seizures. In this study, we have developed a seizure forecasting algorithm using sleep characteristics obtained from a smart shirt worn at night by a large number of hospitalized patients with epilepsy (78). A daily seizure forecast was generated following each night using machine learning methods. Our results show that around half of people with epilepsy may benefit from such an approach.


Asunto(s)
Epilepsia , Convulsiones , Sueño , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Sueño/fisiología , Algoritmos , Adulto Joven , Predicción , Máquina de Vectores de Soporte , Acelerometría/instrumentación , Electrocardiografía , Polisomnografía , Adolescente , Anciano
2.
Artículo en Inglés | MEDLINE | ID: mdl-38082787

RESUMEN

Connectivity analyses of intracranial electroencephalography (iEEG) could guide surgical planning for epilepsy surgery by improving the delineation of the seizure onset zone. Traditional approaches fail to quantify important interactions between frequency components. To assess if effective connectivity based on cross-bispectrum -a measure of nonlinear multivariate cross-frequency coupling- can quantitatively identify generators of seizure activity, cross-bispectrum connectivity between channels was computed from iEEG recordings of 5 patients (34 seizures) with good postsurgical outcome. Personalized thresholds of 50% and 80% of the maximum coupling values were used to identify generating electrode channels. In all patients, outflow coupling between α (8-15 Hz) and ß (16-31 Hz) frequencies identified at least one electrode inside the resected seizure onset zone. With the 50% and 80% thresholds respectively, an average of 5 (44.7%; specificity = 82.6%) and 2 (22.5%; specificity = 99.0%) resected electrodes were correctly identified. Results show promise for the automatic identification of the seizure onset zone based on cross-bispectrum connectivity analysis.


Asunto(s)
Electrocorticografía , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Electroencefalografía/métodos , Convulsiones/diagnóstico
3.
Biomed Opt Express ; 13(12): 6245-6257, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36589558

RESUMEN

Interictal epileptiform discharges (IEDs) are brief neuronal discharges occurring between seizures in patients with epilepsy. The characterization of the hemodynamic response function (HRF) specific to IEDs could increase the accuracy of other functional imaging techniques to localize epileptiform activity, including functional near-infrared spectroscopy and functional magnetic resonance imaging. This study evaluated the possibility of using an intraoperative multispectral imaging system combined with electrocorticography (ECoG) to measure the average HRF associated with IEDs in eight patients. Inter-patient variability of the HRF is illustrated in terms of oxygenated hemoglobin peak latency, oxygenated hemoglobin increase/decrease following IEDs, and signal-to-noise ratio. A sub-region was identified using an unsupervised clustering algorithm in three patients that corresponded to the most active area identified by ECoG.

4.
Front Neurol ; 13: 1089094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712456

RESUMEN

Introduction: While it is known that poor sleep is a seizure precipitant, this association remains poorly quantified. This study investigated whether seizures are preceded by significant changes in sleep efficiency as measured by a wearable equipped with an electrocardiogram, respiratory bands, and an accelerometer. Methods: Nocturnal recordings from 47 people with epilepsy hospitalized at our epilepsy monitoring unit were analyzed (304 nights). Sleep metrics during nights followed by epileptic seizures (24 h post-awakening) were compared to those of nights which were not. Results: Lower sleep efficiency (percentage of sleep during the night) was found in the nights preceding seizure days (p < 0.05). Each standard deviation decrease in sleep efficiency and increase in wake after sleep onset was respectively associated with a 1.25-fold (95 % CI: 1.05 to 1.42, p < 0.05) and 1.49-fold (95 % CI: 1.17 to 1.92, p < 0.01) increased odds of seizure occurrence the following day. Furthermore, nocturnal seizures were associated with significantly lower sleep efficiency and higher wake after sleep onset (p < 0.05), as well as increased odds of seizure occurrence following wake (OR: 5.86, 95 % CI: 2.99 to 11.77, p < 0.001). Discussion: Findings indicate lower sleep efficiency during nights preceding seizures, suggesting that wearable sensors could be promising tools for sleep-based seizure-day forecasting in people with epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA