Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Toxicol ; 39(6): 3641-3653, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504311

RESUMEN

Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 µg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).


Asunto(s)
Cloropirifos , Sistema Enzimático del Citocromo P-450 , Daphnia , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Animales , Daphnia/efectos de los fármacos , Daphnia/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Contaminantes Químicos del Agua/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular , Plaguicidas/toxicidad , Daphnia magna
2.
Ecotoxicology ; 32(1): 25-37, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36564585

RESUMEN

Daphnids and chironomids have been used to assess the ecological effects of chemicals released into water bodies; however, the toxicity mechanisms in organisms are generally difficult to identify. Here, we developed a system capable of estimating the contribution of cytochrome P450 (CYP) to the metabolism of test substances in Daphnia magna and Chironomus yoshimatsui based on toxicity differences in the absence and presence of the CYP inhibitors piperonyl butoxide (PBO) and 1-aminobenzotriazole (ABT). The optimum concentrations of PBO and ABT that could effectively reduce the toxicity of diazinon, which is toxic after oxidative metabolism in vivo, were determined as 0.5 and 0.6 mg/L for D. magna, and 2.0 and 40.0 mg/L for C. yoshimatsui, respectively. Acute immobilization tests of 15 insecticides were conducted for D. magna and C. yoshimatsui, with and without the optimum concentrations of PBO or ABT. In the presence of either inhibitor, chlorpyrifos and chlorfenapyr toxicity was reduced in both organisms, whereas those of thiocyclam, nereistoxin, and silafluofen were enhanced in C. yoshimatsui. Liquid chromatography-mass spectrometry analysis of D. magna and C. yoshimatsui samples exposed to chlorfenapyr confirmed that the level of the active metabolite produced by CYP was decreased by PBO or ABT in both organisms. The system to which the test substance was co-exposed to PBO or ABT will be valuable for estimating the contribution of CYPs to metabolism and elucidating the toxicity mechanism in daphnids and chironomids.


Asunto(s)
Chironomidae , Butóxido de Piperonilo , Animales , Butóxido de Piperonilo/toxicidad , Butóxido de Piperonilo/metabolismo , Daphnia
3.
Gene ; 611: 38-46, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28219780

RESUMEN

To characterize genetic diversity and gene flow among Daphnia galeata populations, the complete nucleotide (nt) sequences of the mitochondrial (mt) DNAs of D. galeata clones isolated from five lakes in Japan (Lakes Shirakaba, Suwa, Kizaki, Kasumigaura, and Biwa) were determined. Comparison of non-synonymous (amino acid altering) substitution rates with synonymous substitution rates of D. galeata mt protein-coding genes demonstrated that ATPase8 and COI genes were the most and least susceptible, respectively, to the evolutional forces selecting the aa substitutions. Several non-synonymous substitutions were found in ATPase8 and ATPase6 even in the comparison that no synonymous substitution was found. Comparison of the total number of nt variations among the mt DNAs suggested the phylogenetic relationship ((((Shirakaba/Suwa, Kizaki), Kasumigaura), Biwa), D. pulex). Maximum-likelihood analysis using the total nt sequences of mt protein-coding genes confirmed this relationship with bootstrap values higher than 98%. All the mtDNAs of the analyzed Japanese D. galeata clones contained a control region of essentially the same structure that is distinct from those of the previously reported European Daphnia species of the D. longispina complex. The two control regions of different structures spread among mtDNAs of the Japanese and European Daphnia species, respectively, probably after the divergence of the Japanese D. galeata under different selection pressures associated with their habitats.


Asunto(s)
ADN Mitocondrial/genética , Daphnia/genética , Variación Genética , Genoma Mitocondrial/genética , Animales , Proteínas de Artrópodos/genética , Secuencia de Bases , ADN Mitocondrial/química , Daphnia/clasificación , Orden Génico , Genes Mitocondriales/genética , Japón , Lagos/parasitología , Proteínas Mitocondriales/genética , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
4.
Gene ; 555(2): 335-45, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25447925

RESUMEN

In insect Drosophila melanogaster, ventral midline cells are crucial to formation of the central nervous system (CNS) and have roles in the specification of ectodermal neuroblasts. Notably, midline cells also have more recently recognized roles in the formation of the higher crustacean Parhyale dorso-ventral axis. The single-minded is a master regulator of ventral midline cells and is required for these functions. Recently sim expression patterns have been reported in various arthropods. These results suggest that the midline precursors evolved from ventral neuroectoderm of common ancestor Mandibulata. However, sim function has been only analyzed in few organisms. To investigate whether these functions of sim, the gene encoding Single-minded, are conserved among insects and crustaceans, we examined the embryonic expression pattern of a lower crustacean Daphnia sim homolog (dma sim) and analyzed the function of dma sim during embryonic development. The Dma Sim protein was expressed in the ventral neuroectoderm (like in onychophoran and chelicerate) and midline (like in mandibulatan). In addition to this conserved ventral neuroectoderm and midline expression, Dma Sim was expressed outside the ventral midline; it was expressed in maxilla 2, presumptive shell glands, and other tissues. To investigate dma sim function, we used RNA interference (RNAi) to inhibit dma sim in Daphnia embryos. Embryos subjected to dma sim RNAi exhibited improper axon tract formation and abnormal limb and ventral development. Furthermore, RNAi-mediated knockdown of dma slit, a putative Dma Sim target gene, resulted in similar embryonic phenotypes. These results indicated that dma sim might be required for proper dma slit-mediated ventral development in addition to being required for a conserved role in the ventral midline. Our findings indicated that sim homologs might have provided different developmental functions to ventral midline cells during metazoan evolution.


Asunto(s)
Daphnia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Animales , Artrópodos , Axones/fisiología , Tipificación del Cuerpo , Crustáceos , ADN Complementario/metabolismo , Drosophila melanogaster , Ectodermo/metabolismo , Evolución Molecular , Hibridación in Situ , Datos de Secuencia Molecular , Neuronas/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Interferencia de ARN , Homología de Secuencia de Aminoácido
5.
Dev Genes Evol ; 220(11-12): 337-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21327957

RESUMEN

Daphnids are small crustaceans ubiquitous in fresh water; they have been a subject of study in ecology, evolution, and environmental sciences for decades. To understand data accumulated in daphnid biology at the molecular level, expressed sequence tags and a genome sequence have been determined. However, these discoveries lead to the problem of how to understand the functions of newly discovered genes. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a useful tool to achieve specific gene silencing in nontransformable species. Hence, we established a technique to inject exogenous materials into ovulated eggs and developed a dsRNA-based RNAi method for Daphnia magna. Eggs were collected just after ovulation and injected with dsRNA specific to the Distal-less (Dll) gene, which functions in appendage development in invertebrates and vertebrates. We found that the dsRNA successfully triggered the degradation of Dll mRNAs, which induced the truncation of the second antenna in a dose-dependent manner. This effect was sequence specific in that: (1) an unrelated dsRNA did not induce any morphological abnormalities and (2) two non-overlapping Dll dsRNAs generated the same phenotype. This is the first report of an RNAi technique in D. magna and, together with the emerging genome sequences, will be useful for advancing knowledge of the molecular biology of daphnids.


Asunto(s)
Daphnia/genética , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , ARN Bicatenario/genética , Alineación de Secuencia
6.
Science ; 331(6017): 555-61, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21292972

RESUMEN

We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Asunto(s)
Daphnia/genética , Ecosistema , Genoma , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Daphnia/fisiología , Ambiente , Evolución Molecular , Conversión Génica , Duplicación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes , Genes Duplicados , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Análisis de Secuencia de ADN
7.
Mutagenesis ; 26(2): 303-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21059809

RESUMEN

Thermus thermophilus is an extremely thermophilic eubacterium that grows optimally at 70-75°C. It does not have a gene encoding O(6)-alkylguanine-DNA alkyltransferase (AGT) for the repair of O(6)-methylguanine (O(6)-meG), but it has a homologous gene atl encoding alkyltransferase-like (ATL) proteins in which the cysteine residue in the active site of the PCHR motif conserved in AGT is replaced by alanine (i.e. lack of methyltransferase activity). To investigate the role of ATL protein in the repair of O(6)-meG, we isolated atl deletion mutants and measured specific G:C→A:T transition mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by a His(+) reversion system at the hisD3110 locus. MNNG caused an increased mutation frequency in the atl-deficient mutant but a significantly higher frequency increase in a uvrA mutant, which is deficient in nucleotide excision repair (NER), indicating that both ATL protein and NER played an important role in preventing G:C→A:T transitions. We observed no difference in MNNG sensitivity between the uvrA atl double mutant and the parent uvrA strain. Our results support a recently proposed repair model in which ATL protein acts as a sensor of O(6)-meG damage and recruits UvrA protein to repair the lesion via an NER system. In addition, the finding that the uvrA atl strain mutated with greater frequency than the single atl strain suggests that O(6)-meG is repaired by NER in the absence of ATL protein. We also discuss the possible association of a transcription-repair coupling factor in a transcription-coupled repair pathway and of MutS protein in a mismatch repair pathway with ATL/NER-mediated repair of O(6)-meG.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Metilación de ADN , Reparación del ADN , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Daño del ADN/efectos de los fármacos , Vectores Genéticos/genética , Guanina/análogos & derivados , Guanina/metabolismo , Metilnitronitrosoguanidina/toxicidad , Mutágenos/toxicidad , Mutación/efectos de los fármacos , Mapeo Restrictivo
8.
DNA Repair (Amst) ; 7(4): 663-9, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18296128

RESUMEN

Thermus thermophilus is an extremely thermophilic, aerobic, and gram-negative eubacterium that grows optimally at 70-75 degrees C, pH 7.5. In extremely high temperature environment, DNA damages in cells occur at a much higher frequency in thermophiles than mesophiles such as E. coli. When temperature rises, the deamination of cytosine residues in double-strand DNA is expected to increase greatly. T. thermophilus HB27 has two putative uracil-DNA glycosylase genes (udgA and udgB). Expression level of udgA gene was 2-3 times higher than that of udgB at 70, 74, and 78 degrees C when it was monitored by beta-glucosidase reporter assay. We developed hisD(3110), hisD(3113), hisD(3115), and hisD(174) marker allele that can specifically detect G:C-->A:T, C:G-->A:T, T:A-->A:T, and A:T-->G:C base-substitutions, respectively, by His(+) reverse mutations. We then disrupted udgA and udgB by thermostable kanamycin-resistant gene (htk) or pyrE gene insertion in each hisD background, and their spontaneous His(+) reversion frequencies were compared. A udgA,B double mutant showed a pronounced increase in G:C-->A:T reversion frequency compared with each single udg mutant, udgA or udgB. Estimated mutation rates of the udgA,B mutant cultured at 60, 70, and 78 degrees C were about 2, 12, and 117 His(+)/10(8)/generation, respectively. At 70 degrees C culture, increased ratio of the mutation rate compared with the udg(+) strain was 12-fold in udgA, 3-fold in udgB, and 56-fold in udgA,B mutant. On the other hand, no difference was observed in other mutations of C:G-->A:T, T:A-->A:T, and A:T-->G:C between udgA,B double mutant and the parent udg(+) strain. The present results indicated that gene products of udgB as well as udgA functioned in vivo to remove uracil in DNA and prevent G:C-->A:T transition mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mutagénesis , Tasa de Mutación , Thermus thermophilus/genética , Uracil-ADN Glicosidasa/metabolismo , Proteínas Bacterianas/genética , Thermus thermophilus/enzimología , Uracil-ADN Glicosidasa/genética
9.
Mutagenesis ; 21(4): 255-60, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16777922

RESUMEN

Thermus thermophilus is an extremely thermophilic eubacterium that grows optimally at 70-75 degrees C. Because the frequency of DNA damage, such as deamination, depurination and single-strand breaks, increases as the temperature rises, the regulation of expression as well as the specificities and activities of T.thermophilus DNA repair systems are of particular interest. To study those systems, we developed a gene expression vector using the T.thermophilus beta-glucosidase gene (bgl) with host strain JOS9 (Deltabgl) derived from the T.thermophilus wild-type strain HB27. Since HB27 has two putative beta-galactosidase genes, the use of a single bgl gene as a reporter in combination with a Deltabgl host strain permits the study of gene expression against a low background level. We assayed Bgl activity with 2-nitrophenyl-beta-d-glucopyranoside as the substrate at 80 degrees C. We measured the expression of seven genes involved in DNA repair--three nucleotide excision repair genes (uvrA, uvrB and uvrC) and four recombinational repair genes (recA, ruvA, ruvB and ruvC). Expression levels of uvrA and uvrB were about three times those of uvrC, while those of ruvA, ruvB and ruvC were almost equal. Both ruvA and ruvC formed an operon with their adjacent 5'-upstream gene paaG and ftsQAZ, respectively. recA was transcribed as an operon of four genes, amt-cinA-ligT-recA. All seven DNA repair genes were expressed constitutively, and the DNA damaging agent mitomycin C did not increase their expression.


Asunto(s)
Reparación del ADN , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Thermus thermophilus/genética , beta-Glucosidasa/genética , Daño del ADN , Relación Dosis-Respuesta a Droga , Genotipo , Glucósidos/química , Mitomicina/farmacología , Modelos Genéticos , Mutación , Plásmidos/metabolismo , Recombinación Genética , Temperatura , beta-Glucosidasa/metabolismo
10.
Gene ; 376(2): 231-9, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16766139

RESUMEN

cDNAs encoding a Daphnia magna homolog of aryl hydrocarbon receptor nuclear translocator (ARNT) were isolated and the structural and functional features as well as the expression pattern of their product, DmagARNT, were analyzed. Among the known bHLH-PAS proteins, the deduced amino acid sequences of DmagARNT showed the highest degree of identity to that of Drosophila ARNT (TGO). Expression of DmagARNT in ARNT-lacking mouse Hepa-c4 cells resulted in the compensation for the loss of hypoxia response, suggesting the formation of a dimer with mouse HIF-1alpha and that the resulting heterodimer binds to the hypoxia-responsive elements (HRE), leading to transcription of the downstream luciferase gene. Expression of D. magna ARNT was evident at the middle to late stages of embryonic development (about 25 h to 48 h after ovulation) in several tissues, including a pair of the 1st antenna, 2nd antenna, 2nd maxilla, five pairs of the thoracic limbs, the central nerve system, anus, dorsal organ, maxillary gland, and carapace. As observed in other species, the D. magna ARNT is likely to function broadly as an expressed dimerization partner in developmental processes. In contrast, expression of ARNT in adult D. magna was limited to the epipodites of thoracic limbs, suggesting that ARNT plays a role solely in hypoxia response in adult Daphnia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Daphnia/embriología , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Emparejamiento Base , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Secuencia Conservada , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Dimerización , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Genes Reporteros , Factor 1 Inducible por Hipoxia/genética , Proteínas de Insectos/análisis , Proteínas de Insectos/genética , Neoplasias Hepáticas/patología , Luciferasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Distribución Tisular
11.
Biochem Biophys Res Commun ; 345(1): 362-70, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16681994

RESUMEN

Two Daphnia magna vitellogenin (VTG) genes in neighboring but opposite orientations were identified. One was the gene for DmagVTG1, a previously characterized VTG polypeptide with a superoxide dismutase (SOD)-like domain at its NH(2)-terminus [Kato et al., Gene 334 (2004) 157-165]. Both genes had a 17-exon and 16-intron structure in the same configuration. DmagVTG2, a polypeptide encoded by the other gene, also had a SOD-like domain at its NH(2)-terminus. The amino acid sequences of the two VTG domains were highly homologous (95.5% identity), while those of the SOD-like domains were less homologous (62.4% identity). The VTG domains are phylogenetically related to insect VTGs while the SOD-like domains are related to viral and bacterial SODs. The intergenic region of 2.6kb between the two genes contains sequences resembling known juvenile hormone (JH)-responsive and ecdysone-responsive elements. JH agonists, pyriproxyfen and fenoxycarb, strongly repressed the expression of VTG genes in neonate daphnids.


Asunto(s)
Daphnia/genética , Daphnia/metabolismo , Hormonas Juveniles/farmacología , Familia de Multigenes/genética , Vitelogeninas/química , Vitelogeninas/genética , Secuencia de Aminoácidos , Animales , Daphnia/efectos de los fármacos , Evolución Molecular , Datos de Secuencia Molecular , Familia de Multigenes/efectos de los fármacos , Homología de Secuencia de Aminoácido , Vitelogeninas/metabolismo
12.
Biosens Bioelectron ; 20(4): 833-40, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15522599

RESUMEN

Agmatine (Agm) is an indicator of squid freshness. The Agm sensor was developed using flow injection analysis (FIA) that consisted of the putrescine oxidase (PuOx) reactor, the agmatinase (AUH)-PuOx reactor and two oxygen electrodes. In the proposed sensor, the first step is that coexisting cadaverine (Cad) and putrescine (Put) are removed by passing through the PuOx reactor and the initial decomposition is determined by the amount of oxygen consumed, simultaneously. The second step is that the amount of Agm is determined by the amount of oxygen consumed in the AUH-PuOx reactor. The optimum conditions for the use of the Agm sensor were as follows: 50 mM HEPES containing MnSO4 at a final concentration of 5 mM, pH 8.0, flow rate of 0.6 mL min(-1) and injection volume of 50 microL. A single assay could be completed in approximately 3 min. A linear relationship was obtained between the output and the Agm concentration in the range of 0.01-1 mM Agm with a correlation coefficient of 0.999. The detection limit was 0.005 mM. The relative standard deviations (RSDs) were 3.14 and 1.19% (n = 20) for 0.1 and 0.3 mM Agm, respectively. The extracts of squid were injected into the proposed sensor and the results were compared with those obtained using the conventional high-performance liquid chromatography (HPLC) method. A correlation was observed between the results obtained by the proposed sensor and those obtained by the conventional method. The determination of squid freshness is one of the good uses of the proposed Agm sensor.


Asunto(s)
Agmatina/análisis , Técnicas Biosensibles/instrumentación , Decapodiformes/química , Electroquímica/instrumentación , Análisis de los Alimentos/instrumentación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Ureohidrolasas/química , Animales , Técnicas Biosensibles/métodos , Electroquímica/métodos , Análisis de Inyección de Flujo/instrumentación , Análisis de Inyección de Flujo/métodos , Análisis de los Alimentos/métodos , Microquímica/instrumentación , Microquímica/métodos , Integración de Sistemas
13.
Gene ; 334: 157-65, 2004 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-15256265

RESUMEN

A cDNA encoding vitellogenin (VTG), a precursor of a major yolk protein, vitellin (VTN), was isolated from cladoceran crustacean Daphnia magna. The deduced amino acid sequence of DmagVTG1, the polypeptide encoded by the cDNA, contained a possible signal peptide sequence of 16 amino acid (aa) residues. The possible mature form of DmagVTG1 consists of 1985 aa residues with a calculated molecular mass of 223,070 Da. The large lipid transfer (LLT) module and a part of the von Willebrand factor D (VWD) module found in the aa sequences of VTGs of many other organisms are well conserved in DmagVTG1. Phylogenetic analysis suggested that the LLT module of DmagVTG1 is more closely related to those of insect VTGs than those of decapodan crustaceans. A unique feature of DmagVTG1 is that it has a superoxide dismutase (SOD)-like domain at its NH(2)-terminus. Antisera against the SOD-like domain, the NH(2)-terminal part of the VTG domain and the COOH-terminal part of the VTG domain, respectively, were prepared and used for analysis of D. magna yolk proteins. Six species (I to VI) of major protein complexes were found in D. magna parthenogenetic eggs isolated immediately after ovulation. Complexes IV and V were the most abundant. DmagVTG1 was a component of Complexes III, IV and V, and the most abundant polypeptide in D. magna eggs. The protein complexes underwent gradual proteolysis during development. One of the primary sites of cleavage was between the two successive Arg residues located at the 1454th and 1455th positions of DmagVTG1.


Asunto(s)
Daphnia/genética , Vitelogeninas/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada/genética , ADN Complementario/química , ADN Complementario/genética , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Electroforesis en Gel de Poliacrilamida , Femenino , Datos de Secuencia Molecular , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Superóxido Dismutasa/genética , Vitelogeninas/metabolismo
14.
Mutagenesis ; 17(4): 313-6, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12110627

RESUMEN

The Escherichia coli strain WP2uvrA is widely used in general mutagenicity screening tests because of its high sensitivity to many kinds of mutagens and it serves as a supplement to the standard Salmonella typhimurium tester strains. In contrast to Salmonella His(+) revertants, E.coli Trp(+) revertants have not been characterized at the molecular level. In this study we found that in the trpE65 allele of WP2uvrA the triplet that codes for the fourth amino acid from the N-terminus of anthranilate synthetase was an ochre stop codon (TAA) instead of a glutamine codon (CAA). In spontaneous Trp(+) revertants the ochre codon had been changed to glutamine (CAA), lysine (AAA), glutamic acid (GAA), leucine (TTA), serine (TCA) or tyrosine (TAC, TAT). Since tryptophan prototrophy could also be restored by ochre suppressor mutations at the anticodon sites in the genes for tRNA(Glu) (glnU), tRNA(Lys) (lysT) and tRNA(Tyr) (tyrT, tyrU), the Trp(+) reversion system with E.coli WP2uvrA detected five types of base substitutions, A.T-->T.A, A.T-->C.G, A.T-->G.C, G.C-->A.T and G.C-->T.A. About 30-50% of Trp(+) revertants induced by N-ethyl-N'-nitro-N-nitrosoguanidine, captan and angelicin plus UVA irradiation were attributable to reversion at the trpE65 ochre locus; the others were attributable to suppressor mutations. In contrast, almost all revertants induced by N-methyl-N'-nitro-N-nitrosoguanidine, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and furylfuramide were caused by suppressor mutations. Thus, the high mutagen sensitivity of WP2uvrA is due to several target sites consisting of A.T base pairs (trpE65, lysT) and G.C base pairs (glnU, tyrT, tyrU).


Asunto(s)
Escherichia coli/genética , Mutación , Triptófano , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Antranilato Sintasa/genética , Emparejamiento Base , Secuencia de Bases , Captano/farmacología , Codón de Terminación , Proteínas de Unión al ADN/genética , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Furanos/farmacología , Metilnitronitrosoguanidina/farmacología , Datos de Secuencia Molecular , Mutágenos/toxicidad , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Tirosina/genética , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA