Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602894

RESUMEN

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cobre , Factor de Crecimiento Nervioso , Péptidos Cíclicos , Factor A de Crecimiento Endotelial Vascular , Células PC12 , Animales , Ratas , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cobre/metabolismo , Cobre/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ionóforos/farmacología , Proteínas de Transporte de Catión/metabolismo , Receptor trkA/metabolismo
2.
Curr Neuropharmacol ; 21(9): 2006-2018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021419

RESUMEN

BACKGROUND: Ectopic cell cycle reactivation in neurons is associated with neuronal death in Alzheimer's disease. In cultured rodent neurons, synthetic ß-amyloid (Aß) reproduces the neuronal cell cycle re-entry observed in the Alzheimer's brain, and blockade of the cycle prevents Aß-induced neurodegeneration. DNA polymerase-ß, whose expression is induced by Aß, is responsible for the DNA replication process that ultimately leads to neuronal death, but the molecular mechanism(s) linking DNA replication to neuronal apoptosis are presently unknown. AIM: To explore the role of a conserved checkpoint pathway started by DNA replication stress, namely the ATM-ATR/Claspin/Chk-1 pathway, in switching the neuronal response from DNA replication to apoptosis. METHODS: Experiments were carried out in cultured rat cortical neurons challenged with toxic oligomers of Aß protein. RESULTS: Small inhibitory molecules of ATM/ATR kinase or Chk-1 amplified Aß-induced neuronal DNA replication and apoptosis, as they were permissive to the DNA polymerase-ß activity triggered by Aß oligomers. Claspin, i.e., the adaptor protein between ATM/ATR kinase and the downstream Chk-1, was present on DNA replication forks of neurons early after Aß challenge, and decreased at times coinciding with neuronal apoptosis. The caspase-3/7 inhibitor I maintained overtime the amount of Claspin loaded on DNA replication forks and, concomitantly, reduced neuronal apoptosis by holding neurons in the S phase. Moreover, a short phosphopeptide mimicking the Chk-1-binding motif of Claspin was able to prevent Aß-challenged neurons from entering apoptosis. CONCLUSION: We speculate that, in the Alzheimer's brain, Claspin degradation by intervening factors may precipitate the death of neurons engaged into DNA replication.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratas , Animales , Péptidos beta-Amiloides/toxicidad , Replicación del ADN , Muerte Celular , Apoptosis/fisiología , Neuronas/fisiología , ADN Polimerasa Dirigida por ADN
3.
Redox Biol ; 51: 102264, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35180474

RESUMEN

Unraveling the role of VDAC3 within living cells is challenging and still requires a definitive answer. Unlike VDAC1 and VDAC2, the outer mitochondrial membrane porin 3 exhibits unique biophysical features that suggest unknown cellular functions. Electrophysiological studies on VDAC3 carrying selective cysteine mutations and mass spectrometry data about the redox state of such sulfur containing amino acids are consistent with a putative involvement of isoform 3 in mitochondrial ROS homeostasis. Here, we thoroughly examined this issue and provided for the first time direct evidence of the role of VDAC3 in cellular response to oxidative stress. Depletion of isoform 3 but not isoform 1 significantly exacerbated the cytotoxicity of redox cyclers such as menadione and paraquat, and respiratory complex I inhibitors like rotenone, promoting uncontrolled accumulation of mitochondrial free radicals. High-resolution respirometry of transiently transfected HAP1-ΔVDAC3 cells expressing the wild type or the cysteine-null mutant VDAC3 protein, unequivocally confirmed that VDAC3 cysteines are indispensable for protein ability to counteract ROS-induced oxidative stress.


Asunto(s)
Cisteína , Canales Aniónicos Dependientes del Voltaje , Cisteína/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
4.
Life (Basel) ; 11(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833132

RESUMEN

Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.

5.
Biomedicines ; 9(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34440152

RESUMEN

Mutations in Cu/Zn Superoxide Dismutase (SOD1) gene represent one of the most common causes of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder that specifically affects motor neurons (MNs). The dismutase-active SOD1 G93A mutant is responsible for the formation of toxic aggregates onto the mitochondrial surface, using the Voltage-Dependent Anion Channel 1 (VDAC1) as an anchor point to the organelle. VDAC1 is the master regulator of cellular bioenergetics and by binding to hexokinases (HKs) it controls apoptosis. In ALS, however, SOD1 G93A impairs VDAC1 activity and displaces HK1 from mitochondria, promoting organelle dysfunction, and cell death. Using an ALS cell model, we demonstrate that a small synthetic peptide derived from the HK1 sequence (NHK1) recovers the cell viability in a dose-response manner and the defective mitochondrial respiration profile relative to the ADP phosphorylation. This correlates with an unexpected increase of VDAC1 expression and a reduction of SOD1 mutant accumulation at the mitochondrial level. Overall, our findings provide important new insights into the development of therapeutic molecules to fight ALS and help to better define the link between altered mitochondrial metabolism and MNs death in the disease.

6.
Aging (Albany NY) ; 13(14): 18033-18050, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290150

RESUMEN

Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer's disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of ß-amyloid protein (Aß) enhance glucose uptake in neurons, and that endogenous Aß is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aß tone and re-established by the exogenous addition of synthetic Aß monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aß release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer's disease could be linked to factors interfering with release and functions of Aß monomers.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Metabolismo Energético , Glucólisis , Fosforilación Oxidativa , Ratas
7.
Chemistry ; 24(24): 6349-6353, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29624764

RESUMEN

Although fibrillar amyloid beta peptide (Aß) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aß oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aß toxicity. In this work, the biological properties of 5[4-(6-O-ß-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aß and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aß intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Ciclodextrinas/farmacología , Citotoxinas/farmacología , Porfirinas/farmacología , Zinc/química , beta-Ciclodextrinas/farmacología , Péptidos beta-Amiloides/química , Humanos , Cinética
9.
Sci Rep ; 6: 34802, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721436

RESUMEN

Superoxide Dismutase 1 mutants associate with 20-25% of familial Amyotrophic Lateral Sclerosis (ALS) cases, producing toxic aggregates on mitochondria, notably in spinal cord. The Voltage Dependent Anion Channel isoform 1 (VDAC1) in the outer mitochondrial membrane is a docking site for SOD1 G93A mutant in ALS mice and the physiological receptor of Hexokinase I (HK1), which is poorly expressed in mouse spinal cord. Our results demonstrate that HK1 competes with SOD1 G93A for binding VDAC1, suggesting that in ALS spinal cord the available HK1-binding sites could be used by SOD1 mutants for docking mitochondria, producing thus organelle dysfunction. We tested this model by studying the action of a HK1-N-terminal based peptide (NHK1). This NHK1 peptide specifically interacts with VDAC1, inhibits the SOD1 G93A binding to mitochondria and restores the viability of ALS model NSC34 cells. Altogether, our results suggest that NHK1 peptide could be developed as a therapeutic tool in ALS, predicting an effective role also in other proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Hexoquinasa/metabolismo , Fragmentos de Péptidos/farmacología , Superóxido Dismutasa-1/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hexoquinasa/química , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Terapia Molecular Dirigida , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación , Superóxido Dismutasa-1/genética , Canal Aniónico 1 Dependiente del Voltaje/genética
10.
Sci Rep ; 6: 33444, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27633879

RESUMEN

Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components.


Asunto(s)
Cobre/farmacología , Activación del Canal Iónico/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HeLa , Humanos , Concentración 50 Inhibidora , Iones , Mutación/genética , Inhibidores de Proteasoma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia , Triptófano/metabolismo , Zinc/farmacología
11.
Chembiochem ; 17(16): 1541-9, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27252026

RESUMEN

The inhibition of amyloid formation is a promising therapeutic approach for the treatment of neurodegenerative diseases. Peptide-based inhibitors, which have been widely investigated, are generally derived from original amyloid sequences. Most interestingly, trehalose, a nonreducing disaccharide of α-glucose, is effective in preventing the aggregation of numerous proteins. We have determined that the development of hybrid compounds could provide new molecules with improved properties that might synergically increase the potency of their single moieties. In this work, the ability of Ac-LPFFD-Th, a C-terminally trehalose-conjugated derivative, to slow down the Aß aggregation process was investigated by means of different biophysical techniques, including thioflavin T fluorescence, dynamic light scattering, ESI-MS, and NMR spectroscopy. Moreover, we demonstrate that Ac-LPFFD-Th modifies the aggregation features of Aß and protects neurons from Aß oligomers' toxic insult.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Peptidomiméticos/farmacología , Trehalosa/farmacología , Péptidos beta-Amiloides/química , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estructura Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Peptidomiméticos/química , Ratas , Trehalosa/química
12.
Biochim Biophys Acta ; 1857(6): 789-98, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26947057

RESUMEN

Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that ß-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC.


Asunto(s)
Mitocondrias/genética , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Canal Aniónico 1 Dependiente del Voltaje/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Herbicidas/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Immunoblotting , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Oxidantes/farmacología , Paraquat/farmacología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transformación Genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
13.
J Inorg Biochem ; 159: 149-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27015654

RESUMEN

The vascular endothelial growth factor A (VEGF-A) is a potent angiogenic factor, its activity may be influenced by the presence of copper(II) ions. To mimic the interaction between copper(II) and VEGF (Vascular Endotelial Growth Factor), the N- and C-terminally blocked peptide fragments VEGF73-101 and VEGF84-101, owing to VEGF165 protein, have been synthesized. These protein domains represent a specific recognition site with the VEGF receptor (VEGFR). Copper(II) complexes with VEGF73-101 and VEGF84-101 were investigated by means of potentiometry and UV-Vis, ESI-MS, CD, EPR spectroscopic methods. Both peptides have three histidine residues and display a binding high affinity for copper(II) ions. The proliferative activity of the peptides in the absence and presence of copper(II) ions as well as of VEGF-165 protein was also tested on HUVEC cells (Human Umbilical Vein Endothelial Cells). The VEGF73-101 showed a dose-dependent anti-proliferative activity, while the shorter peptide VEGF84-101 did not affect HUVEC proliferation, both in the presence and in the absence of VEGF.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cobre , Péptidos , Receptores de Factores de Crecimiento Endotelial Vascular , Factor A de Crecimiento Endotelial Vascular , Cobre/química , Cobre/farmacología , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos/química , Péptidos/farmacología , Dominios Proteicos , Receptores de Factores de Crecimiento Endotelial Vascular/química , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/farmacología
14.
J Diabetes Res ; 2015: 918573, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26582441

RESUMEN

Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced ß-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by ß-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to ß-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly ß-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of ß-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aß) misfolding.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo , Conformación Proteica
15.
Eur J Med Chem ; 81: 442-55, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24859763

RESUMEN

The human islet polypeptide (hIAPP) or amylin is a 37-residue peptide hormone secreted by ß-cells of the islet of Langerhans in the pancreas. Unlike the rat variant of IAPP (rIAPP), human amylin is highly amyloidogenic and is found as amyloid deposits in nearly 95% of patients afflicted with type 2 diabetes mellitus (T2DM). Human and rat IAPP have nearly identical primary sequence differing at only six positions which are encompassed within the 17-29 aminoacid region. Using Circular Dichroism (CD), Dynamic Light Scattering (DLS) and ThT-fluorescence (Th-T), we examined the aggregation properties of both full-length hIAPP1-37 and the related peptide fragment hIAPP17-29. For the sake of comparison, similar experiments were carried out on the respective rat variants rIAPP1-37 and rIAPP17-29. These studies were conducted at physiological pH in buffered solution not containing fluorinated co-solvents as well as in the presence of model membranes (LUV). In addition, the cytotoxic activity of the investigated peptides was determined toward different pancreatic ß-cell lines. All the peptide studied in this work resulted cytotoxic despite ß-sheet structure being observed, in vitro, for the hIAPP1-37 only. This suggests that ß-sheet conformational transition that generally precedes the fibril formation, is not a prerequisite for toxicity towards ß-cells. Interestingly, confocal microscopy indicated that the IAPP peptides can enter the cell and might exert their toxic action at an intracellular level.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Fragmentos de Péptidos/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Fragmentos de Péptidos/química , Conformación Proteica , Ratas , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Ital J Biochem ; 52(1): 17-24, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12833633

RESUMEN

Mitochondrial porin or VDAC (Voltage Dependent Anion selective Channels) was identified for the first time in 1976, on the basis of the evolutionary similarity between the gram negative and mitochondrial outer membranes. Since this achievement VDAC has been extensively investigated: its functional features have been sharply defined upon reconstitution in artificial membranes and its sequence has been determined in many genomes. Unfortunately the tertiary structure has not yet been solved, mainly because it proved to be very difficult to get suitable crystals. Despite this established knowledge, in the last few years this protein has attracted renewed interest. There are two main reasons for this interest: the discovery, in most eukaryotes, of a family of genes encoding VDAC isoforms and the claims of VDAC involvement in the intrinsic pathway of apoptosis and in particular in the mechanism of cytochrome c release from mitochondria. We can affirm that nowadays the eukaryotic porin (or VDAC) is studied in a more general cellular contest, looking at the interactions and integration with other molecules, since VDAC is in a crucial position in the cell, forming the main interface between the mitochondrial and the cellular metabolisms. In this minireview we will briefly focus our attention onto the following topics: 1) recent advances about the structure of VDAC; 2) the VDAC-related multigene families; 3) the presence, targeting and function of VDAC in various cell membranes.


Asunto(s)
Membrana Celular/metabolismo , Porinas/fisiología , Animales , Humanos , Mitocondrias/metabolismo , Modelos Genéticos , Modelos Moleculares , Familia de Multigenes , Porinas/química , Porinas/genética , Conformación Proteica , Isoformas de Proteínas , Canal Aniónico 2 Dependiente del Voltaje , Canales Aniónicos Dependientes del Voltaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA