Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EMBO J ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394354

RESUMEN

Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.

2.
Chembiochem ; 25(15): e202400202, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818670

RESUMEN

RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.


Asunto(s)
Nucleótidos de Pirimidina , Humanos , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/metabolismo , ARN/metabolismo , ARN/química , Nucleótidos de Purina/metabolismo , Nucleótidos de Purina/química , Simulación de Dinámica Molecular , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética
3.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481270

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Asunto(s)
Citostáticos , Lactococcus lactis , Humanos , Citostáticos/metabolismo , Lactococcus lactis/metabolismo , Hidrolasas/metabolismo , Línea Celular Tumoral , Arginina
4.
Wiley Interdiscip Rev RNA ; 14(6): e1795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384835

RESUMEN

RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas , Humanos , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Antivirales
5.
Nucleic Acids Res ; 50(22): e132, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259646

RESUMEN

Analysis of the protein coding transcriptome by the RNA sequencing requires either enrichment of the desired fraction of coding transcripts or depletion of the abundant non-coding fraction consisting mainly of rRNA. We propose an alternative mRNA enrichment strategy based on the RNA-binding properties of the human IFIT1, an antiviral protein recognizing cap 0 RNA. Here, we compare for Saccharomyces cerevisiae an IFIT1-based mRNA pull-down with yeast targeted rRNA depletion by the RiboMinus method. IFIT1-based RNA capture depletes rRNA more effectively, producing high quality RNA-seq data with an excellent coverage of the protein coding transcriptome, while depleting cap-less transcripts such as mitochondrial or some non-coding RNAs. We propose IFIT1 as a cost effective and versatile tool to prepare mRNA libraries for a variety of organisms with cap 0 mRNA ends, including diverse plants, fungi and eukaryotic microbes.


Asunto(s)
Saccharomyces cerevisiae , Transcriptoma , Humanos , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Caperuzas de ARN , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN/métodos
6.
Cells ; 11(19)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230905

RESUMEN

HAX1 is a human protein with no known homologues or structural domains. Mutations in the HAX1 gene cause severe congenital neutropenia through mechanisms that are poorly understood. Previous studies reported the RNA-binding capacity of HAX1, but the role of this binding in physiology and pathology remains unexplained. Here, we report the transcriptome-wide characterization of HAX1 RNA targets using RIP-seq and CRAC, indicating that HAX1 binds transcripts involved in translation, ribosome biogenesis, and rRNA processing. Using CRISPR knockouts, we find that HAX1 RNA targets partially overlap with transcripts downregulated in HAX1 KO, implying a role in mRNA stabilization. Gene ontology analysis demonstrated that genes differentially expressed in HAX1 KO (including genes involved in ribosome biogenesis and translation) are also enriched in a subset of genes whose expression correlates with HAX1 expression in four analyzed neoplasms. The functional connection to ribosome biogenesis was also demonstrated by gradient sedimentation ribosome profiles, which revealed differences in the small subunit:monosome ratio in HAX1 WT/KO. We speculate that changes in HAX1 expression may be important for the etiology of HAX1-linked diseases through dysregulation of translation.


Asunto(s)
Proteínas , Ribosomas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Mutación , Proteínas/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
7.
Nucleic Acids Res ; 50(16): 9051-9071, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018811

RESUMEN

In mammals, m7G-adjacent nucleotides undergo extensive modifications. Ribose of the first or first and second transcribed nucleotides can be subjected to 2'-O-methylation to form cap1 or cap2, respectively. When the first transcribed nucleotide is 2'-O-methylated adenosine, it can be additionally modified to N6,2'-O-dimethyladenosine (m6Am). Recently, the crucial role of cap1 in distinguishing between 'self' and 'non-self' in mammalian cells during viral infection was revealed. Here, we attempted to understand the impact of cap methylations on RNA-related processes. Therefore, we synthesized tetranucleotide cap analogues and used them for RNA capping during in vitro transcription. Using this tool, we found that 2'-O-methylation of the second transcribed nucleotide within the mRNA 5' cap influences protein production levels in a cell-specific manner. This modification can strongly hamper protein biosynthesis or have no influence on protein production levels, depending on the cell line. Interestingly, 2'-O-methylation of the second transcribed nucleotide and the presence of m6Am as the first transcribed nucleotide serve as determinants that define transcripts as 'self' and contribute to transcript escape from the host innate immune response. Additionally, cap methylation status does not influence transcript affinity towards translation initiation factor eIF4E or in vitro susceptibility to decapping by DCP2; however, we observe the resistance of cap2-RNA to DXO (decapping exoribonuclease)-mediated decapping and degradation.


Asunto(s)
Nucleótidos , Caperuzas de ARN , Animales , Metilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Nucleótidos/metabolismo , Evasión Inmune , Mamíferos/genética
8.
RNA Biol ; 18(sup2): 623-639, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766865

RESUMEN

Despite the development of non-radioactive DNA/RNA labelling methods, radiolabelled nucleic acids are commonly used in studies focused on the determination of RNA fate. Nucleic acid fragments with radioactive nucleotide analoguesincorporated into the body or at the 5' or 3' terminus of the molecule can serve as probes in hybridization-based analyses of in vivo degradation and processing of transcripts. Radiolabelled oligoribonucleotides are utilized as substrates in biochemical assays of various RNA metabolic enzymes, such as exo- and endoribonucleases, nucleotidyltransferases or helicases. In some applications, the placement of the label is not a concern, while in other cases it is required that the radioactive mark is located at the 5'- or 3'-end of the molecule. An unsurpassed method for 5'-end RNA labelling employs T4 polynucleotide kinase (PNK) and [γ-32P]ATP. In the case of 3'-end labelling, several different possibilities exist. However, they require the use of costly radionucleotide analogues. Previously, we characterized an untypical nucleotidyltransferase named CutA, which preferentially incorporates cytidines at the 3'-end of RNA substrates. Here, we demonstrate that this unusual feature can be used for the development of a novel, efficient, reproducible and economical method of RNA 3'-end labelling by CutA-mediated cytidine tailing. The labelling efficiency is comparable to that achieved with the most common method applied to date, i.e. [5'-32P]pCp ligation to the RNA 3'-terminus catalysed by T4 RNA ligase I. We show the utility of RNA substrates labelled using our new method in exemplary biochemical assays assessing directionality of two well-known eukaryotic exoribonucleases, namely Dis3 and Xrn1.


Asunto(s)
Nucleotidiltransferasas/química , ARN/química , Coloración y Etiquetado/métodos , Citidina Trifosfato/química , Técnicas In Vitro , Marcaje Isotópico/métodos , Nucleótidos/química , Radioisótopos de Fósforo , ARN/genética , ARN Ligasa (ATP)/química , Coloración y Etiquetado/normas , Especificidad por Sustrato , Uridina Trifosfato/química
9.
Nat Commun ; 12(1): 4951, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400637

RESUMEN

The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.


Asunto(s)
Poli A/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Exosomas/metabolismo , Poliadenilación , Polinucleotido Adenililtransferasa/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
FEBS J ; 288(11): 3418-3423, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33590687

RESUMEN

mRNA degradation rate is one of the key stages of gene expression regulation in eukaryotic cells. To date, intertwined processes of post-transcriptional control have been widely investigated, but focused rather on the examination of mechanisms controlling stability of particular protein-coding transcripts. Currently, a wealth of information from structural, biochemical, and high-throughput studies makes it tempting to define general rules governing mRNA stability that could be considered as versatile and valid on a genome-wide scale. Basu et al. analyzed multiple experimental and computational data on Saccharomyces cerevisiae mRNA half-lives as well as on secondary structures and protein-binding sites within transcripts, and collated it with available structures of ribonucleases, that is, enzymes responsible for mRNA degradation. This approach allowed to conclude how particular mRNA features such as lengths of unstructured terminal or internal regions or sequestration into ribonucleoprotein complexes impact half-lives of protein-coding transcripts and to define genome-scale principles of mRNA stability control in yeast.


Asunto(s)
Genoma Fúngico/genética , Estabilidad del ARN/genética , Saccharomyces cerevisiae/genética , Transcriptoma/genética , Regulación Fúngica de la Expresión Génica/genética , Unión Proteica/genética , ARN Mensajero/genética
11.
Nucleic Acids Res ; 48(16): 9387-9405, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32785623

RESUMEN

Template-independent terminal ribonucleotide transferases (TENTs) catalyze the addition of nucleotide monophosphates to the 3'-end of RNA molecules regulating their fate. TENTs include poly(U) polymerases (PUPs) with a subgroup of 3' CUCU-tagging enzymes, such as CutA in Aspergillus nidulans. CutA preferentially incorporates cytosines, processively polymerizes only adenosines and does not incorporate or extend guanosines. The basis of this peculiar specificity remains to be established. Here, we describe crystal structures of the catalytic core of CutA in complex with an incoming non-hydrolyzable CTP analog and an RNA with three adenosines, along with biochemical characterization of the enzyme. The binding of GTP or a primer with terminal guanosine is predicted to induce clashes between 2-NH2 of the guanine and protein, which would explain why CutA is unable to use these ligands as substrates. Processive adenosine polymerization likely results from the preferential binding of a primer ending with at least two adenosines. Intriguingly, we found that the affinities of CutA for the CTP and UTP are very similar and the structures did not reveal any apparent elements for specific NTP binding. Thus, the properties of CutA likely result from an interplay between several factors, which may include a conformational dynamic process of NTP recognition.


Asunto(s)
Proteínas Bacterianas/genética , Citosina/metabolismo , ARN Nucleotidiltransferasas/genética , ARN/genética , Aspergillus nidulans/genética , Proteínas Bacterianas/química , Sitios de Unión/genética , Cristalografía por Rayos X , Citosina/química , Modelos Moleculares , Poli A/química , Poli A/genética , ARN Nucleotidiltransferasas/química , Especificidad por Sustrato
12.
RNA ; 24(12): 1677-1692, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30266864

RESUMEN

Pre-rRNA processing generates mature 18S, 5.8S, and 28S/25S rRNAs through multistage removal of surrounding 5'-ETS/3'-ETS and intervening ITS1/ITS2 segments. Endonucleolytic activities release by-products, which need to be eliminated. Here, we investigated the interplay of exosome-associated 3'-5' exonucleases DIS3 and RRP6 in rRNA processing and by-product elimination in human cells. In agreement with previous reports, we observed accumulation of 5.8S and 18S precursors upon dysfunction of these enzymes. However, none of these phenotypes was so pronounced as previously overlooked accumulation of short RNA species derived from 5'-ETS (01/A'-A0), in cells with nonfunctional DIS3. We demonstrate that removal of 01/A'-A0 is independent of the XRN2 5'-3' exonucleolytic activity. Instead, it proceeds rapidly after A0 cleavage and occurs exclusively in the 3'-5' direction in several phases-following initiation by an unknown nuclease, the decay is executed by RRP6 with some contribution of DIS3, whereas the ultimate phase involves predominantly DIS3. Our data shed new light onto the role of human exosome in 5'-ETS removal. Furthermore, although 01/A'-A0 degradation involves the action of two nucleases associated with the exosome ring, similarly to 5.8S 3'-end maturation, it is likely that contrary to the latter process, RRP6 acts prior to or redundantly with DIS3.


Asunto(s)
Exorribonucleasas/química , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Precursores del ARN/química , Procesamiento Postranscripcional del ARN/genética , Núcleo Celular/química , Núcleo Celular/genética , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/química , Exosomas/enzimología , Humanos , Precursores del ARN/genética , Ribonucleasas/química , Ribonucleasas/genética
13.
PLoS One ; 13(3): e0194887, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590189

RESUMEN

Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos , Proteínas/metabolismo , Recombinación Genética , Terminación de la Transcripción Genética , Clonación Molecular , ADN Nucleotidiltransferasas/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Nucleofosmina , Regiones Promotoras Genéticas , Proteínas/genética
14.
RNA ; 23(12): 1902-1926, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28947555

RESUMEN

Noncanonical RNA nucleotidyltransferases (NTases), including poly(A), poly(U) polymerases (PAPs/PUPs), and C/U-adding enzymes, modify 3'-ends of different transcripts affecting their functionality and stability. They contain PAP/OAS1 substrate-binding domain (SBD) with inserted NTase domain. Aspergillus nidulans CutA (AnCutA), synthesizes C/U-rich 3'-terminal extensions in vivo. Here, using high-throughput sequencing of the 3'-RACE products for tails generated by CutA proteins in vitro in the presence of all four NTPs, we show that even upon physiological ATP excess synthesized tails indeed contain an unprecedented number of cytidines interrupted by uridines and stretches of adenosines, and that the majority end with two cytidines. Strikingly, processivity assays documented that in the presence of CTP as a sole nucleotide, the enzyme terminates after adding two cytidines only. Comparison of our CutA 3D model to selected noncanonical NTases of known structures revealed substantial differences in the nucleotide recognition motif (NRM) within PAP/OAS1 SBD. We demonstrate that CutA specificity toward CTP can be partially changed to PAP or PUP by rational mutagenesis within NRM and, analogously, Cid1 PUP can be converted into a C/U-adding enzyme. Collectively, we suggest that a short cluster of amino acids within NRM is a determinant of NTases' substrate preference, which may allow us to predict their specificity.


Asunto(s)
Aspergillus nidulans/enzimología , Biología Computacional/métodos , Citidina Trifosfato/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Secuencia de Aminoácidos , Citidina/química , Citidina Trifosfato/química , Modelos Moleculares , Homología de Secuencia , Especificidad por Sustrato
15.
FEBS Lett ; 591(13): 1801-1850, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28524231

RESUMEN

Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.


Asunto(s)
Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Células Vegetales/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Ribosomas/genética , Levaduras/citología , Animales , Humanos , Precursores del ARN/metabolismo , Ribosomas/metabolismo , Levaduras/genética
16.
Nucleic Acids Res ; 45(4): 2068-2080, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28204585

RESUMEN

The exosome complex is a major eukaryotic exoribonuclease that requires the SKI complex for its activity in the cytoplasm. In yeast, the Ski7 protein links both complexes, whereas a functional equivalent of the Ski7 has remained unknown in the human genome. Proteomic analysis revealed that a previously uncharacterized short splicing isoform of HBS1L (HBS1LV3) is the long-sought factor linking the exosome and SKI complexes in humans. In contrast, the canonical HBS1L variant, HBS1LV1, which acts as a ribosome dissociation factor, does not associate with the exosome and instead interacts with the mRNA surveillance factor PELOTA. Interestingly, both HBS1LV1 and HBS1LV3 interact with the SKI complex and HBS1LV1 seems to antagonize SKI/exosome supercomplex formation. HBS1LV3 contains a unique C-terminal region of unknown structure, with a conserved RxxxFxxxL motif responsible for exosome binding and may interact with the exosome core subunit RRP43 in a way that resembles the association between Rrp6 RNase and Rrp43 in yeast. HBS1LV3 or the SKI complex helicase (SKI2W) depletion similarly affected the transcriptome, deregulating multiple genes. Furthermore, half-lives of representative upregulated mRNAs were increased, supporting the involvement of HBS1LV3 and SKI2W in the same mRNA degradation pathway, essential for transcriptome homeostasis in the cytoplasm.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Proteínas de Unión al GTP/metabolismo , Sitios de Unión , Citoplasma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo
17.
Biochim Biophys Acta ; 1863(12): 3125-3147, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27713097

RESUMEN

RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.


Asunto(s)
Citoplasma/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Animales , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Humanos , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN no Traducido/química , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Uridina Monofosfato/metabolismo
18.
Nucleic Acids Res ; 44(21): 10437-10453, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27431325

RESUMEN

The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here, we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5' UTR. Importantly, DIS3L2 contributes to surveillance of maturing snRNAs during their cytoplasmic processing. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3' RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis.


Asunto(s)
Exorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Elementos Alu , Línea Celular , Macrosomía Fetal/genética , Macrosomía Fetal/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Unión Proteica , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
19.
Genome Res ; 25(11): 1622-33, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26294688

RESUMEN

Human DIS3, the nuclear catalytic subunit of the exosome complex, contains exonucleolytic and endonucleolytic active domains. To identify DIS3 targets genome-wide, we combined comprehensive transcriptomic analyses of engineered HEK293 cells that expressed mutant DIS3, with Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) experiments. In cells expressing DIS3 with both catalytic sites mutated, RNAs originating from unannotated genomic regions increased ∼2.5-fold, covering ∼70% of the genome and allowing for thousands of novel transcripts to be discovered. Previously described pervasive transcription products, such as Promoter Upstream Transcripts (PROMPTs), accumulated robustly upon DIS3 dysfunction, representing a significant fraction of PAR-CLIP reads. We have also detected relatively long putative premature RNA polymerase II termination products of protein-coding genes whose levels in DIS3 mutant cells can exceed the mature mRNAs, indicating that production of such truncated RNA is a common phenomenon. In addition, we found DIS3 to be involved in controlling the formation of paraspeckles, nuclear bodies that are organized around NEAT1 lncRNA, whose short form was overexpressed in cells with mutated DIS3. Moreover, the DIS3 mutations resulted in misregulation of expression of ∼50% of transcribed protein-coding genes, probably as a secondary effect of accumulation of various noncoding RNA species. Finally, cells expressing mutant DIS3 accumulated snoRNA precursors, which correlated with a strong PAR-CLIP signal, indicating that DIS3 is the main snoRNA-processing enzyme. EXOSC10 (RRP6) instead controls the levels of the mature snoRNAs. Overall, we show that DIS3 has a major nucleoplasmic function in shaping the human RNA polymerase II transcriptome.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Transcriptoma , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Polimerasa II/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
20.
RNA Biol ; 12(9): 1010-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26237581

RESUMEN

Production of ribosomes relies on more than 200 accessory factors to ensure the proper sequence of steps and faultless assembly of ribonucleoprotein machinery. Among trans-acting factors are numerous enzymes, including ribonucleases responsible for processing the large rRNA precursor synthesized by RNA polymerase I that encompasses sequences corresponding to mature 18S, 5.8S, and 25/28S rRNA. In humans, the identity of most enzymes responsible for individual processing steps, including endoribonucleases that cleave pre-rRNA at specific sites within regions flanking and separating mature rRNA, remains largely unknown. Here, we investigated the role of hUTP24 in rRNA maturation in human cells. hUTP24 is a human homolog of the Saccharomyces cerevisiae putative PIN domain-containing endoribonuclease Utp24 (yUtp24), which was suggested to participate in the U3 snoRNA-dependent processing of yeast pre-rRNA at sites A0, A1, and A2. We demonstrate that hUTP24 interacts to some extent with proteins homologous to the components of the yeast small subunit (SSU) processome. Moreover, mutation in the putative catalytic site of hUTP24 results in slowed growth of cells and reduced metabolic activity. These effects are associated with a defect in biogenesis of the 40S ribosomal subunit, which results from decreased amounts of 18S rRNA as a consequence of inaccurate pre-rRNA processing at the 5'-end of the 18S rRNA segment (site A1). Interestingly, and in contrast to yeast, site A0 located upstream of A1 is efficiently processed upon UTP24 dysfunction. Finally, hUTP24 inactivation leads to aberrant processing of 18S rRNA 2 nucleotides downstream of the normal A1 cleavage site.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Genes de ARNr , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Dominio Catalítico/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA