Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Food Chem ; 445: 138788, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394910

RESUMEN

Point-of-care testing (POCT) is promising for biodetection in home healthcare due to advantages of simplicity, rapidity, low cost, portability, high sensitivity and accuracy, and object-oriented POCT platform can be developed by nanozyme-based biosensing. However, designing high-performance nanozymes with targeted regulated catalytic activity remains challenging. Herein, advanced PtRhRuCu quaternary alloy nanozymes (QANs) were rationally designed and successfully synthesized. Cu atoms induced mechanisms of hydrogen peroxide (H2O2) activation and d-band center regulation, achieving high enhancement of peroxide (POD)-like activity and inhibition of oxidase (OXD)-like activity. Inspired by this, a smartphone-assisted colorimetric platform integrated with test strips was established for glucose detection of soft drinks, with a detection limit of 0.021 mM and a recovery rate of 97.87 to 103.36 %. This work not only provides a novel path for tuning specific enzyme-like activities of metal nanozymes, but also shows the potential feasibility for rational design of POCT sensors in actual samples.


Asunto(s)
Cobre , Glucosa , Colorimetría , Peróxido de Hidrógeno , Teléfono Inteligente , Peroxidasas
2.
Int J Biol Macromol ; 255: 128263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984580

RESUMEN

DOTA@Sludge@Chitosan was synthesized by a facile treatment using DOTA (1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid) to modify dry sludge and chitosan in an acidic solution. The performance of developed DOTA@Sludge@Chitosan was investigated for the adsorptive removal of Cr6+ and Pb2+ from water. Characterization studies showed that the materials possess a large surface area (52.009 m2/g), pore volume (0.069 cm3/g), and abundant functional groups of amino and hydroxyl. The prepared material showed a synergetic effect due to carboxylic acid and sludge, effectively removing Cr6+ and Pb2+. It reached 329.4 mg/g (Pb2+) and 273.3 mg/g (Cr6+) at 20 °C, much higher than commercial activated carbon. The regeneration of the adsorbent was tested for six adsorption and desorption cycles. The results demonstrate that the DOTA@Sludge@Chitosan adsorbent well-maintained high adsorption capacity attributed to its stability, making it a promising adsorbent for heavy metals removal from industrial effluent.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Cromo , Aguas del Alcantarillado , Agua , Plomo , Adsorción , Cinética , Concentración de Iones de Hidrógeno
3.
Dalton Trans ; 52(46): 17308-17314, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37937488

RESUMEN

CsPbBr3 all-inorganic perovskite solar cells (PSCs) have been extensively investigated due to their remarkable stability. However, their limited film quality and wide bandgap result in a low photoelectric conversion efficiency (PCE). In this study, BiI3 was incorporated into CsPbBr3 films to synergistically enhance light absorption and film quality. It was found that the partial substitution of Pb2+ and Br- with Bi3+ and I- in CsPbBr3 improved film quality, enhanced light absorption, and facilitated charge transfer and extraction. The device incorporating BiI3-incorporated CsPbBr3 as a light absorbing layer achieved an efficiency of 9.54%, exhibiting a significant enhancement of 19.4% compared to the undoped device. This work provides a new incorporating strategy that collaboratively improves light absorption and film quality.

4.
ACS Nano ; 17(22): 22527-22538, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37933888

RESUMEN

Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.


Asunto(s)
Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Pulmón/metabolismo , Vanadio , Estrés Oxidativo , Compuestos Orgánicos , Especies Reactivas de Oxígeno/farmacología
5.
Nanoscale ; 15(36): 14717-14736, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37655752

RESUMEN

Electrocatalytic hydrogen evolution reaction (HER) is one of the most promising and clean strategies to prepare hydrogen on a large scale. Nevertheless, the efficiency of HER is greatly restricted by the large overpotential at the anode, and it is necessary to develop low cost electrocatalysts with excellent performance and stability. Molybdenum carbide has shown great potential in the field of HER due to its unique electronic structure and physical and chemical properties. In this paper, the current progress of molybdenum carbide-based catalysts for HER is summarized. The influence of phase structure, nanostructure, heterostructure and heteroatoms doping on its catalytic performance is discussed in detail. Especially, the catalytic mechanisms are analyzed according to structural characterization and theoretical calculation results. Finally, the challenges and prospects for the further development of molybdenum carbide-based catalysts for HER are put forward to guide the progress of this field.

6.
J Hazard Mater ; 458: 131934, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390690

RESUMEN

This study evaluated the adsorption of five volatile organic compounds (VOCs) on Opoka, precipitated silica, and palygorskite, to elucidate the effect of their pore size on VOCs adsorption. The adsorption capacity of these adsorbents is not only highly correlated with their surface area and pore volume, but also notably improved by the presence of micropores. The variation in adsorption capacity for different VOCs was primarily influenced by their boiling point and polarity. Palygorskite, which had the smallest total pore volume (0.357 cm3/g) but the largest micropore volume (0.043 cm3/g) among the three adsorbents, exhibited the highest adsorption capacity for all tested VOCs. Additionally, the study constructed slit pore models of palygorskite with micropores (0.5 and 1.5 nm) and mesopores (3.0 and 6.0 nm), calculated and discussed the heat of adsorption, concentration distribution, and interaction energy of VOCs adsorbed on different pore models. The results revealed that the adsorption heat, concentration distribution, total interaction energy, and van der Waals energy decrease with increasing pore size. The concentration of VOCs in 0.5 nm pore was nearly three times that in 6.0 nm pore. This work can also provide guidance for further research on using adsorbents with mixed microporous and mesoporous structures to control VOCs.

7.
J Colloid Interface Sci ; 618: 11-21, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35316708

RESUMEN

The redox state disorder of biological system caused by oxidative stress can lead to a variety of clinical dysfunction and diseases. It is an important challenge to find artificial materials that can efficiently adjust the redox balance to maintain health. In this work, a nitrogen-doped carbon (NCDs) redox nanozyme loaded into metal organic framework (MOF, UiO-66) is designed to form NCDs/UiO-66 nanocomposites. The high specific surface area and porosity of UiO-66 serve as ideal carrier to support multifunctional NCDs. NCDs/UiO-66 nanocomposites are comprehensively investigated for their ability to scavenge or generate reactive oxygen species (ROS) and free radicals. Experimental results demonstrate that NCDs/UiO-66 can remove intrinsic free radicals (•OH, O2•- and ABTS•+), exhibiting superoxide dismutase-like activity and antioxidant capability. Moreover, NCDs/UiO-66 can efficiently produce ROS (•OH, O2•- and 1O2) under irradiation showing light induced oxidase-like activity and pro-oxidant capability. This suggests the anti-oxidant and pro-oxidant activities of NCDs/UiO-66 could be regulated easily by light irradiation. Using the fluorescent property and light-activated oxidase-like activity of NCDs/UiO-66, the methods for detection of ferric ion (Fe3+) and glutathione (GSH) are developed.


Asunto(s)
Estructuras Metalorgánicas , Antioxidantes , Carbono , Radicales Libres , Glutatión , Hierro , Nitrógeno , Oxidación-Reducción , Oxidorreductasas , Ácidos Ftálicos , Especies Reactivas de Oxígeno
8.
ACS Omega ; 6(29): 18566-18575, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337197

RESUMEN

In this work, zeolitic imidazolate frameworks (ZIF-8) and carboxylated carbon nanotubes (CNTs) were compounded to prepare a kebab-like one-dimensional linear composite, ZIF-8@CNTs. The mixed-matrix membrane (MMM) for separating carbon dioxide is prepared by embedding it into the polymer matrix Pebax-1657. The results indicated the successful synthesis of the ZIF-8@CNT composite. The combination of ZIF-8 and carboxylated CNTs avoided the aggregation of ZIF-8 in the polymer, increased the free volume of the MMM, and enhanced the CO2 adsorption performance and CO2/N2 separation performance. In addition, the interaction between CNTs and ZIF-8 provided a fast transport channel for CO2 molecules and improved the mechanical properties of the MMM. The 5 wt % ZIF-8@CNT MMM showed the best separation performance with a CO2 permeability of 225.5 Barrer and a CO2/N2 selectivity of 48.9, which exceeded the Robeson upper limit in 2008. The combination of high permeability and selectivity made Pebax/ZIF-8@CNT MMMs promising for industrial CO2 separation applications.

9.
ACS Omega ; 6(7): 4807-4815, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33644589

RESUMEN

Metal nanozymes hold promise for chemical and biological applications, and their implementation relies on high catalytic efficiency and stability. Using the metal-organic framework as an ideal carrier for well-dispersed ultra-small metal nanoparticles (NPs) is beneficial for improving the catalytic efficiency of nanozymes. In this study, a zirconium-based metal organic framework (UiO-66) with good chemical stability and high porosity was synthesized and used to construct Pt/UiO-66 nanocomposites. The percentage of Pt in UiO-66 can be tuned easily by adjusting the feeding amount of PtCl4 2-. Because of the confinement effect of mesopores, the Pt particles with an average diameter of 3.8 nm are formed and dispersed throughout the pores of the UiO-66 particle. The Pt/UiO-66 composites show efficient oxidase- and peroxidase-like activity. Both the oxidase- and peroxidase-like activities are dependent on the Pt percentage. Pt/UiO-66-6% exhibits enhanced peroxidase-like activity, ∼3.9 times higher than that of commercial Pt/C with 10 wt % Pt. We propose that the construction of Pt/UiO-66 increased the utilization efficiency and stability of Pt NPs and provided more active sites for catalytic reactions. Using the peroxidase-like activity of Pt/UiO-66, a colorimetric method that can be used for actual blood glucose detection was developed for the specific detection of glucose with a limit of detection of 0.033 mM.

10.
Polymers (Basel) ; 12(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963164

RESUMEN

The composition and structure of polyacrylonitrile (PAN) precursors play an important role during thermal stabilization, which influences the properties of the resulting carbon fibers. In this paper, PAN homopolymer and PAN-itaconic (IA) copolymers with different IA contents were synthesized by aqueous phase precipitation polymerization. The effects of IA content on the structure and thermal properties were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The morphology of PAN polymers showed that the average size of the PAN particles increased with the increase of IA content in the feed. The content of the IA comonomer on the copolymers was quantitatively characterized by the relative absorbance intensity (A1735/A2243) in FTIR spectrum. With the increase of IA content in the feed, PAN-IA copolymers exhibited lower degree of crystallinity and crystal size than the control PAN homopolymer. The results from DSC curves indicated that PAN-IA1.0 copolymers had lower initial exothermic temperature (192.4 °C) and velocity of evolving heat (6.33 J g-1 °C-1) in comparison with PAN homopolymer (Ti = 238.1 °C and ΔH/ΔT = 34.6 J g-1 °C-1) in an air atmosphere. TGA results suggested that PAN-IA1.0 copolymers had higher thermal stability than PAN homopolymer, which can form a ladder structure easier during thermal processing. Therefore, PAN-IA1.0 copolymers would be a suitable candidate for preparing high performance PAN based carbon fibers.

11.
Polymers (Basel) ; 11(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30960406

RESUMEN

Polyacrylonitrile (PAN) grafted amino-functionalized multi walled carbon nanotubes (amino-MWCNTs) were synthesized by in situ polymerization under aqueous solvent. The grafted MWCNT/PAN nascent composite fibers were prepared by the wet spinning method. Fourier transform infrared spectroscopy and Raman spectroscopy indicated that the amino-MWCNTs and PAN macromolecular chains had interfacial interactions and formed chemical bonds. The grafting content of the PAN polymer on the amino-MWCNTs was up to 73.2% by thermo gravimetric analysis. The incorporation of the grafted MWCNTs improved the degree of crystallization and crystal size of PAN nascent fibers, and changed the thermal properties during exothermic processing in an air atmosphere. Morphology analysis and testing of mechanical properties showed that the grafted MWCNT/PAN nascent composite fibers with a more uniform diameter distribution and larger diameter had higher tensile strength and tensile modulus than the control PAN nascent fibers.

12.
Brain Res ; 1696: 22-30, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859146

RESUMEN

Traumatic brain injury (TBI) is closely associated with marked inflammation. Although alpha-Melanocyte-Stimulating Hormone (α-MSH) exerts powerful anti-inflammatory effects, changes in endogenous α-MSH levels following TBI remain poorly understood. We investigated the changes of α-MSH levels in the cerebrospinal fluid (CSF) and plasma of post-TBI patients and the association of these changes with the severity of TBI and inflammation. TBI severity was assessed by the GCS coma scale from which, patients were separated into three groups. Clinical data were collected on days 1, 3, 5, and 7 including levels of α-MSH, tumor necrosis factor (TNF-α), and intracranial pressure (ICP). α-MSH levels in CSF steadily increased for one week (peak at day 5) but plasma α-MSH decreased and remained low. These changes were more substantial in the Severe Group of TBI with lower GCS. TNF-α levels were similarly increased in both CSF and plasma (peak at day 3). In the early phase of TBI elevated TNF-α and ICP dominated, and CSF α-MSH displayed a slow and insufficient increase. In later phases of TBI, TNF-α and ICP levels were alleviated concordantly with sustained increases in central α-MSH, wherein an anti-inflammatory environment might predominate. The relationship between plasma α-MSH and TNF-α showed significant negative correlation, and the relationship between CSF α-MSH and TNF-α showed significant positive correlation with a two-day lag. In conclusion, plasma α-MSH levels decreased, but CSF levels increased slowly following TBI. These changes were more substantial in severe patients with a lower GCS. Increases in central α-MSH paralleled alleviation of inflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , alfa-MSH/análisis , Adulto , Anciano , Lesiones Encefálicas , Lesiones Traumáticas del Encéfalo/fisiopatología , Femenino , Escala de Coma de Glasgow , Humanos , Inflamación , Presión Intracraneal/fisiología , Masculino , Persona de Mediana Edad , Factores de Tiempo , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/fisiología , alfa-MSH/sangre , alfa-MSH/líquido cefalorraquídeo
13.
Chem Commun (Camb) ; 52(95): 13764-13767, 2016 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-27822578

RESUMEN

A new pseudo-seeding and nano-scaffolding method was developed to synthesize thin ZIF-8 hybrid membranes (100-200 nm) with remarkable mechanical and structural stability and high H2 permeance (2.87 × 10-5 mol m-2 s-1 Pa-1) and selectivity over CO2 (14), N2 (18), CH4 (35), C3H6 (52.4) and C3H8 (950.1).

14.
Angew Chem Int Ed Engl ; 55(40): 12470-4, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27581166

RESUMEN

Cobalt (or iron)-polyphenol coordination polymers with crystalline frameworks are synthesized for the first time. The crystalline framework is formed by the assembly of metal ions and polyphenol followed by oxidative self-polymerization of the organic ligands (polyphenol) during hydrothermal treatment in alkaline condition. As a result, such coordination crystals are even partly stable in strong acid (such as 2 m HCl). The metal (Co or Fe)-natural abundant polyphenol (tannin) coordination crystals are a renewable source for the fabrication of metal/carbon composites as a nonprecious-metal catalyst, which show high catalytic performance for both oxygen reduction reaction and oxygen evolution reaction. Such excellent performance makes metal-polyphenol coordination crystals an efficient precursor to fabricate low-cost catalysts for the large-scale application of fuel cells and metal-air batteries.

15.
Acta Crystallogr C ; 60(Pt 7): m348-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15237157

RESUMEN

The title compound, [Co2(H2PO4)4(C10H8N2)2], is dinuclear, centred on a symmetry centre of the P1 space group. Each Co atom has a distorted square-pyramidal coordination involving two N atoms from a bipyridine molecule and three O atoms from two bridging and one terminal dihydrogen orthophosphate anion. The molecular structure and packing are stabilized by intermolecular hydrogen-bond interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA