Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822888

RESUMEN

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Asunto(s)
Astrocitos , Cilios , Ratones Noqueados , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Cilios/metabolismo , Cilios/efectos de los fármacos , Ratones , Complemento C3/metabolismo , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Apoptosis/efectos de los fármacos
2.
Exp Dermatol ; 33(3): e15021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429832

RESUMEN

Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.


Asunto(s)
Integrina alfa5 , Células de Langerhans , Humanos , Fibronectinas/metabolismo , Inmunidad , Integrina alfa5/metabolismo , Integrinas/metabolismo , Lipopolisacáridos/farmacología , Monocitos
4.
Front Mol Biosci ; 10: 1149828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179569

RESUMEN

Introduction: Atopic dermatitis (AD) is a common allergic eczema that affects up to 10% of adults in developed countries. Immune cells in the epidermis, namely, Langerhans cells (LCs), contribute to the pathogenesis of AD, although their exact role(s) in disease remain unclear. Methods: We performed immunostaining on human skin and peripheral blood mononuclear cells (PBMCs) and visualized primary cilium. Result and discussion: We show that human dendritic cells (DCs) and LCs have a previously unknown primary cilium-like structure. The primary cilium was assembled during DC proliferation in response to the Th2 cytokine GM-CSF, and its formation was halted by DC maturation agents. This suggests that the role of primary cilium is to transduce proliferation signaling. The platelet-derived growth factor receptor alpha (PDGFRα) pathway, which is known for transducing proliferation signals in the primary cilium, promoted DC proliferation in a manner dependent on the intraflagellar transport (IFT) system. We also examined the epidermal samples from AD patients, and observed aberrantly ciliated LCs and keratinocytes in immature and proliferating states. Our results identify a potential relationship between the primary cilium and allergic skin barrier disorders, and suggest that targeting the primary cilium may contribute to treating AD.

5.
Biochem Biophys Res Commun ; 654: 1-9, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36871485

RESUMEN

The skin is a protective interface between the internal organs and environment and functions not only as a physical barrier but also as an immune organ. However, the immune system in the skin is not fully understood. A member of the thermo-sensitive transient receptor potential (TRP) channel family, TRPM4, which acts as a regulatory receptor in immune cells, was recently reported to be expressed in human skin and keratinocytes. However, the function of TRPM4 in immune responses in keratinocytes has not been investigated. In this study, we found that treatment with BTP2, a known TRPM4 agonist, reduced cytokine production induced by tumor necrosis factor (TNF) α in normal human epidermal keratinocytes and in immortalized human epidermal keratinocytes (HaCaT cells). This cytokine-reducing effect was not observed in TRPM4-deficient HaCaT cells, indicating that TRPM4 contributed to the control of cytokine production in keratinocytes. Furthermore, we identified aluminum potassium sulfate, as a new TRPM4 activating agent. Aluminum potassium sulfate reduced Ca2+ influx by store-operated Ca2+ entry in human TRPM4-expressing HEK293T cells. We further confirmed that aluminum potassium sulfate evoked TRPM4-mediated currents, showing direct evidence for TRPM4 activation. Moreover, treatment with aluminum potassium sulfate reduced cytokine expression induced by TNFα in HaCaT cells. Taken together, our data suggested that TRPM4 may serve as a new target for the treatment of skin inflammatory reactions by suppressing the cytokine production in keratinocytes, and aluminum potassium sulfate is a useful ingredient to prevent undesirable skin inflammation through TRPM4 activation.


Asunto(s)
Dermatitis , Canales Catiónicos TRPM , Humanos , Células HEK293 , Queratinocitos/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunidad , Canales Catiónicos TRPM/metabolismo
6.
Immunohorizons ; 7(1): 81-96, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645854

RESUMEN

The pathology of skin immune diseases such as atopic dermatitis is closely related to the overproduction of cytokines by macrophages. Although the pathological functions of macrophages in skin are known, mechanisms of how they detect the tissue environment remain unknown. TRPV4, a nonselective cation channel with high Ca2+ permeability, is activated at physiological temperatures from 27 to 35°C and involved in the functional control of macrophages. However, the relationship between TRPV4 function in macrophages and skin immune disease is unclear. In this study, we demonstrate that TRPV4 activation inhibits NF-κB signaling, resulting in the suppression of IL-1ß production in both human primary monocytes and macrophages derived from human primary monocytes. A TRPV4 activator also inhibited the differentiation of human primary monocytes into GM-CSF M1 macrophages but not M-CSF M2 macrophages. We also observed a significant increase in the number of inducible NO synthase-positive/TRPV4-negative dermal macrophages in atopic dermatitis compared with healthy human skin specimens. Our findings provide insight into the physiological relevance of TRPV4 to the regulation of macrophages during homeostasis maintenance and raise the potential for TRPV4 to be an anti-inflammatory target.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/patología , Canales Catiónicos TRPV/fisiología , Macrófagos , Citocinas/metabolismo , Antiinflamatorios
7.
Genes Cells ; 28(2): 83-96, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36453010

RESUMEN

Adhesion GPCRs (aGPCRs) are a subfamily of GPCRs that are involved in cell adhesion, cell proliferation, and cell migration in various tissues. G protein-coupled receptor proteolytic site (GPS) of aGPCR is required to cleave the extracellular domain autocatalytically, generating two fragments; a N-terminal fragment (NTF) and a C-terminal fragment (CTF) containing seven transmembrane structure. NTF can interact with CTF non-covalently after cleavage, however the physiological significance of the cleavage of aGPCR at GPS, and also the interaction between NTF and CTF have not been fully clarified yet. In this study, we first investigated the expression profiles of two aGPCRs, GPR56/ADGRG1, and LPHN1/ADGRL1 in mouse brain, and found that the NTF and CTF of GPR56 independently expressed in different brain region at different developmental stages. Immunoprecipitation of GPR56CTF co-immunoprecipitated LPHN1NTF from mouse brain and HEK293T cells expressing both fragments. Stimulation with LPHN1 ligand, α-Latrotoxin N4C (αLTXN4C), to cells expressing LPHN1NTF and GPR56CTF increased intracellular Ca2+ concentration ([Ca2+ ]i). We also demonstrated that GPR56KO mouse neurons attenuated their Ca2+ response to αLTXN4C. These results suggest the possibility of functional and chimeric complex containing LPHN1NTF and GPR56CTF in neuronal signal transduction.


Asunto(s)
Neuronas , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Ratones , Adhesión Celular , Movimiento Celular , Células HEK293 , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Iran J Pharm Res ; 22(1): e138856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38655233

RESUMEN

Background: Two mangostin compounds, gamma-mangostin and alpha-mangostin, show anticancer properties through the inhibition of cell proliferation and cell migration. Metastatic triple-negative breast cancer (TNBC) cells, including MDA-MB-231, highly express C-X-C chemokine receptor type 4 (CXCR4) to maintain reactive oxygen species (ROS) and cell migration. Objectives: This study was performed to analyze and compare different modes of action of γ-mangostin and α-mangostin as antimigratory effects targeted on CXCR4 in MDA-MB-231 as a model of TNBC cell. Methods: This study investigated the effect of γ-mangostin and α-mangostin using a series of assays, including Cell Counting Kit-8 (CCK-8) assay for cytotoxicity, wound healing assay for migration study, quantitative real-time polymerase chain reaction (qRT-PCR) for gene expression analysis, and flow cytometry for ROS measurement, along with in silico study to observe the binding between the compound and CXCR4. Results: The findings revealed half maximal inhibitory concentration (IC50) values of 25 and 20 µM for γ-mangostin and α-mangostin in MDA-MB 231 cells, respectively. Moreover, a concentration of 10 µM was used for the migration assay. Both γ-mangostin and α-mangostin significantly suppressed cell migration within 24 hours. The present gene expression studies revealed the downregulation of key migration-associated genes, namely Farp, CXCR4, and LPHN2, upon γ-mangostin treatment but not α-mangostin. Additionally, both γ-mangostin and α-mangostin increased cellular ROS generation, highlighting the same effect of γ-mangostin and α-mangostin ROS elevation to inhibit cancer cell migration. Molecular docking simulations further suggested a potential interaction between γ-mangostin and α-mangostin with CXCR4 in high affinity. Conclusions: These findings suggest that both γ-mangostin and α-mangostin inhibit breast cancer cell migration and induce cellular ROS levels in MDA-MB-231 cells; notably, γ-mangostin suppresses CXCR4 mRNA expression that might correlate to its activity to inhibit MDA-MB-231 cell migration.

9.
Front Cell Dev Biol ; 9: 621318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644059

RESUMEN

The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.

10.
Exp Dermatol ; 30(6): 792-803, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33455013

RESUMEN

Primary cilia influence cell activity, and thus have a unique role in maintaining cell proliferation and differentiation. In atopic dermatitis (AD) and psoriasis, areas of skin inflammation exhibit dysregulated keratinocyte homeostasis. The role of primary cilia in these conditions remains unclear. The objectives of this study is to elucidate the incidence of primary cilia in skin inflammation and the potential mechanism underlying the dysregulation of keratinocytes. Primary cilia were observed using immunofluorescence staining. Normal skin samples were compared with skin samples from patients with AD or psoriasis in terms of cilia numbers and length. The effect of cytokine stimulation on ciliogenesis in keratinocytes was analysed using a primary keratinocyte culture. IFT88, an important ciliary intraflagellar protein, was blocked in Th2 and Th17 cytokines-stimulated keratinocytes. These effects were analysed with quantitative polymerase chain reaction and Western blot. Significant increases in ciliated cells were observed in AD and psoriasis skin samples compared with normal skin samples. The stimulation of keratinocytes using Th2 and Th17 cytokines modulated the formation of primary cilia. The amount of IFT88 in the primary cilia associated with the phosphorylation of JNK, but not p38, in keratinocytes stimulated with interleukin-13, 17A and 22. An increase of ciliated cells in the epidermis may impair keratinocyte differentiation under stress conditions caused by inflammation in both AD and psoriasis patients.


Asunto(s)
Cilios/metabolismo , Dermatitis Atópica/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Psoriasis/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos
11.
FASEB J ; 31(8): 3622-3635, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28432198

RESUMEN

Periconception maternal folic acid (vitamin B9) supplementation can reduce the prevalence of neural tube defects (NTDs), although just how folates benefit the developing embryo and promote closing of the neural tube and other morphologic processes during development remains unknown. Folate contributes to a 1-carbon metabolism, which is essential for purine biosynthesis and methionine recycling and affects methylation of DNA, histones, and nonhistone proteins. Herein, we used animal models and cultured mammalian cells to demonstrate that disruption of the methylation pathway mediated by folate compromises normal neural tube closure (NTC) and ciliogenesis. We demonstrate that the embryos with NTD failed to adequately methylate septin2, a key regulator of cilium structure and function. We report that methylation of septin2 affected its GTP binding activity and formation of the septin2-6-7 complex. We propose that folic acid promotes normal NTC in some embryos by regulating the methylation of septin2, which is critical for normal cilium formation during early embryonic development.-Toriyama, M., Toriyama, M., Wallingford, J. B., Finnell, R. H. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure.


Asunto(s)
Cilios/fisiología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Ácido Fólico/metabolismo , Tubo Neural/fisiología , Septinas/metabolismo , Animales , Dactinomicina/análogos & derivados , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Metilación , Ratones , Defectos del Tubo Neural/etiología , Plásmidos , Transducción de Señal , Xenopus/embriología
12.
J Biol Chem ; 287(16): 12691-702, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22367209

RESUMEN

Doublecortin (DCX) is a microtubule-associated protein that is specifically expressed in neuronal cells. Genetic mutation of DCX causes lissencephaly disease. Although the abnormal cortical lamination in lissencephaly is thought to be attributable to neuronal cell migration defects, the regulatory mechanisms governing interactions between DCX and cytoskeleton in the migration of neuronal progenitor cells remain obscure. In this study we found that the G(s) and protein kinase A (PKA) signal elicited by pituitary adenylate cyclase-activating polypeptide promotes neuronal progenitor cells migration. Stimulation of G(s)-PKA signaling prevented microtubule bundling and induced the dissociation of DCX from microtubules in cells. PKA phosphorylated DCX at Ser-47, and the phospho-mimicking mutant DCX-S47E promoted cell migration. Activation of PKA and DCX-S47E induced lamellipodium formation. Pituitary adenylate cyclase-activating polypeptide and DCX-S47E stimulated the activation of Rac1, and DCX-S47E interacted with Asef2, a guanine nucleotide exchange factor for Rac1. Our data reveal a dual reciprocal role for DCX phosphorylation in the regulation of microtubule and actin dynamics that is indispensable for proper brain lamination.


Asunto(s)
Citoesqueleto de Actina/fisiología , Movimiento Celular/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Células-Madre Neurales/citología , Neuropéptidos/metabolismo , Animales , Células COS , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/enzimología , Chlorocebus aethiops , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HEK293 , Humanos , Ratones , Células-Madre Neurales/enzimología , Neuronas/citología , Neuronas/enzimología , Técnicas de Cultivo de Órganos , Fosforilación/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA