Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 6(21): eabb0601, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494754

RESUMEN

Cellular differentiation leads to the formation of specialized cell types and complex morphological variations. Often, differentiating cells transition between states by switching how they respond to the signaling environment. However, the mechanisms regulating these transitions are poorly understood. Differentiating neurons delaminate from the neuroepithelium through the regulated process of apical abscission, which mediates an acute loss of polarity and primary cilium disassembly. Using high-resolution live-cell imaging in chick neural tube, we show that these cells retain an Arl13b+ particle, which elongates and initiates intraflagellar trafficking as it transits toward the cell body, indicating primary cilium remodeling. Notably, disrupting cilia during and after remodeling inhibits axon extension and leads to axon collapse, respectively. Furthermore, cilium remodeling corresponds to a switch from a canonical to noncanonical cellular response to Shh. This work transforms our understanding of how cells can rapidly reinterpret signals to produce qualitatively different responses within the same tissue context.


Asunto(s)
Cilios , Transducción de Señal , Tubo Neural/metabolismo , Neurogénesis , Neuronas , Transducción de Señal/fisiología
2.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023819

RESUMEN

The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises distinct structural and functional properties. Here, we sought to elucidate the significance of phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer cells where ERK5 has be found to be hyperphosphoryated.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/química , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteómica/métodos , Treonina/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Células HeLa , Humanos , Espectrometría de Masas , Proteína Quinasa 7 Activada por Mitógenos/genética , Fosforilación , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal , Transcripción Genética
3.
Development ; 145(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30297374

RESUMEN

Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.


Asunto(s)
Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cresta Neural/citología , Transducción de Señal , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Adhesiones Focales/efectos de los fármacos , Modelos Biológicos , Morfolinos/farmacología , Cresta Neural/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Xenopus/embriología , Familia-src Quinasas/metabolismo
4.
Mech Dev ; 154: 170-178, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30016646

RESUMEN

The neural crest (NC) is a transient embryonic cell population that migrates extensively during development. Ric-8A, a guanine nucleotide exchange factor (GEF) for different Gα subunits regulates cranial NC (CNC) cell migration in Xenopus through a mechanism that still remains to be elucidated. To properly migrate, CNC cells establish an axis of polarization and undergo morphological changes to generate protrusions at the leading edge and retraction of the cell rear. Here, we aim to study the role of Ric-8A in cell polarity during CNC cell migration by examining whether its signaling affects the localization of GTPase activity in Xenopus CNC using GTPase-based probes in live cells and aPKC and Par3 as polarity markers. We show that the levels of Ric-8A are critical during migration and affect the localization of polarity markers and the subcellular localization of GTPase activity, suggesting that Ric-8A, probably through heterotrimeric G-protein signaling, regulates cell polarity during CNC migration.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Cresta Neural/metabolismo , Cresta Neural/fisiología , Animales , Transducción de Señal/fisiología , Xenopus
5.
Gene Expr Patterns ; 22(1): 15-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27613600

RESUMEN

Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.


Asunto(s)
Diferenciación Celular/genética , Desarrollo Embrionario/genética , Proteínas de Unión al GTP Heterotriméricas/biosíntesis , Xenopus/genética , Secuencia de Aminoácidos/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/genética , Hibridación in Situ , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Transducción de Señal , Somitos/crecimiento & desarrollo , Somitos/metabolismo , Xenopus/crecimiento & desarrollo
6.
Dev Biol ; 378(2): 74-82, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23588098

RESUMEN

The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.


Asunto(s)
Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Cresta Neural/citología , Proteínas de Xenopus/metabolismo , Animales , Adhesión Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Hibridación in Situ , Microscopía Confocal , Cresta Neural/embriología , Cresta Neural/metabolismo , Transducción de Señal/genética , Cráneo/embriología , Cráneo/inervación , Imagen de Lapso de Tiempo/métodos , Xenopus/embriología , Proteínas de Xenopus/genética , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA