Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 593(7857): 51-55, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828303

RESUMEN

The standard model of particle physics describes the vast majority of experiments and observations involving elementary particles. Any deviation from its predictions would be a sign of new, fundamental physics. One long-standing discrepancy concerns the anomalous magnetic moment of the muon, a measure of the magnetic field surrounding that particle. Standard-model predictions1 exhibit disagreement with measurements2 that is tightly scattered around 3.7 standard deviations. Today, theoretical and measurement errors are comparable; however, ongoing and planned experiments aim to reduce the measurement error by a factor of four. Theoretically, the dominant source of error is the leading-order hadronic vacuum polarization (LO-HVP) contribution. For the upcoming measurements, it is essential to evaluate the prediction for this contribution with independent methods and to reduce its uncertainties. The most precise, model-independent determinations so far rely on dispersive techniques, combined with measurements of the cross-section of electron-positron annihilation into hadrons3-6. To eliminate our reliance on these experiments, here we use ab initio quantum chromodynamics (QCD) and quantum electrodynamics simulations to compute the LO-HVP contribution. We reach sufficient precision to discriminate between the measurement of the anomalous magnetic moment of the muon and the predictions of dispersive methods. Our result favours the experimentally measured value over those obtained using the dispersion relation. Moreover, the methods used and developed in this work will enable further increased precision as more powerful computers become available.

2.
Phys Rev Lett ; 121(2): 022002, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30085700

RESUMEN

We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon, and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of u, d, s, and c quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than 6 fm. All connected and disconnected Wick contractions are calculated. Continuum limits are carried out using six lattice spacings. We obtain a_{e}^{LO-HVP}=189.3(2.6)(5.6)×10^{-14}, a_{µ}^{LO-HVP}=711.1(7.5)(17.4)×10^{-10} and a_{τ}^{LO-HVP}=341.0(0.8)(3.2)×10^{-8}, where the first error is statistical and the second is systematic.

3.
Phys Rev Lett ; 116(17): 172001, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27176514

RESUMEN

We present a QCD calculation of the u, d, and s scalar quark contents of nucleons based on 47 lattice ensembles with N_{f}=2+1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we obtain f_{ud}^{N}=0.0405(40)(35) and f_{s}^{N}=0.113(45)(40), which translates into σ_{πN}=38(3)(3) MeV, σ_{sN}=105(41)(37) MeV, and y_{N}=0.20(8)(8) for the sigma terms and the related ratio, where the first errors are statistical and the second errors are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text).

4.
Science ; 347(6229): 1452-5, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25814578

RESUMEN

The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA