Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nutrients ; 16(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931170

RESUMEN

Androgen production primarily occurs in Leydig cells located in the interstitial compartment of the testis. In aging males, testosterone is crucial for maintaining muscle mass and strength, bone density, sexual function, metabolic health, energy levels, cognitive function, as well as overall well-being. As men age, testosterone production by Leydig cells of the testes begins to decline at a rate of approximately 1% per year starting from their 30s. This review highlights recent findings concerning the use of natural polyphenolics compounds, such as flavonoids, resveratrol, and phenolic acids, to enhance testosterone production, thereby preventing age-related degenerative conditions associated with testosterone insufficiency. Interestingly, most of the natural polyphenolic antioxidants having beneficial effects on testosterone production tend to enhance the expression of the steroidogenic acute regulatory protein (Star) gene in Leydig cells. The STAR protein facilitates the entry of the steroid precursor cholesterol inside mitochondria, a rate-limiting step for androgen biosynthesis. Natural polyphenolic compounds can also improve the activities of steroidogenic enzymes, hypothalamus-pituitary gland axis signaling, and testosterone bioavailability. Thus, many polyphenolic compounds such as luteolin, quercetin, resveratrol, ferulic acid phenethyl ester or gigantol may be promising in delaying the initiation of late-onset hypogonadism accompanying aging in males.


Asunto(s)
Antioxidantes , Hipogonadismo , Polifenoles , Testosterona , Masculino , Humanos , Hipogonadismo/tratamiento farmacológico , Antioxidantes/farmacología , Polifenoles/farmacología , Testosterona/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Animales , Envejecimiento/efectos de los fármacos , Fosfoproteínas/metabolismo , Resveratrol/farmacología
2.
Drug Dev Res ; 85(3): e22181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619209

RESUMEN

The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Cinamatos , Hidroxiurea/análogos & derivados , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
3.
Molecules ; 29(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675711

RESUMEN

Although much less common than anthocyanins, 3-Deoxyanthocyanidins (3-DAs) and their glucosides can be found in cereals such as red sorghum. It is speculated that their bioavailability is higher than that of anthocyanins. Thus far, little is known regarding the therapeutic effects of 3-DAs and their O-ß-D-glucosides on cancer, including prostate cancer. Thus, we evaluated their potential to decrease cell viability, to modulate the activity of transcription factors such as NFκB, CREB, and SOX, and to regulate the expression of the gene CDH1, encoding E-Cadherin. We found that 4',7-dihydroxyflavylium chloride (P7) and the natural apigeninidin can reduce cell viability, whereas 4',7-dihydroxyflavylium chloride (P7) and 4'-hydroxy-7-O-ß-D-glucopyranosyloxyflavylium chloride (P3) increase the activities of NFkB, CREB, and SOX transcription factors, leading to the upregulation of CDH1 promoter activity in PC-3 prostate cancer cells. Thus, these compounds may contribute to the inhibition of the epithelial-to-mesenchymal transition in cancer cells and prevent the metastatic activity of more aggressive forms of androgen-resistant prostate cancer.


Asunto(s)
Antocianinas , Cadherinas , Glucósidos , Regiones Promotoras Genéticas , Neoplasias de la Próstata , Sorghum , Humanos , Masculino , Antocianinas/farmacología , Antocianinas/química , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/efectos de los fármacos , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/química , FN-kappa B/metabolismo , Células PC-3 , Regiones Promotoras Genéticas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Sorghum/química
4.
Chem Biodivers ; 21(4): e202301758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38241641

RESUMEN

Propolis was collected from honeybee hives in three geographically distinct Algerian climates and extracts were characterized for composition and bioactivity. Bees were identified as native subspecies using an in-silico DraI mtDNA COI-COII test. Over 20 compounds were identified in extracts by LC-MS. Extracts from the Medea region were more enriched in phenolic content (302±28 mg GAE/g of dry extract) than those from Annaba and Ghardaia regions. Annaba extracts had the highest flavonoid content (1870±385 mg QCE/g of dry extract). Medea extracts presented the highest free-radical scavenging activity (IC50=13.5 µg/mL) using the DPPH radical assay while Ghardaia extracts from the desert region were weak (IC50>100 µg/mL). Antioxidant activities measured using AAPH oxidation of linoleic acid were similar in all extracts with IC50 values ranging from 2.9 to 4.9 µg/mL. All extracts were cytotoxic (MTT assay) and proapoptotic (Annexin-V) against human leukemia cell lines in the low µg/mL range, although the Annaba extract was less active against the Reh cell line. Extracts inhibited cellular 5-lipoxygenase product biosynthesis with IC50 values ranging from 0.6 to 3.2 µg/mL. Overall, examined propolis extracts exhibited significant biological activity that warrant further characterization in cellular and in vivo models.


Asunto(s)
Antioxidantes , Própolis , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Própolis/farmacología , Própolis/química , Araquidonato 5-Lipooxigenasa , Extractos Vegetales/química , Fenoles/farmacología , Flavonoides/farmacología
5.
Conserv Physiol ; 11(1): coad099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107465

RESUMEN

Arctic char (Salvelinus alpinus) is facing the decline of its southernmost populations due to several factors including rising temperatures and eutrophication. These conditions are also conducive to episodes of cyclic hypoxia, another possible threat to this species. In fact, lack of oxygen and reoxygenation can both have serious consequences on fish as a result of altered ATP balance and an elevated risk of oxidative burst. Thus, fish must adjust their phenotype to survive and equilibrate their energetic budget. However, their energy allocation strategy could imply a reduction in growth which could be deleterious for their fitness. Although the impact of cyclic hypoxia is a major issue for ecosystems and fisheries worldwide, our knowledge on how salmonid deal with high oxygen fluctuations remains limited. Our objective was to characterize the effects of cyclic hypoxia on growth and metabolism in Arctic char. We monitored growth parameters (specific growth rate, condition factor), hepatosomatic and visceral indexes, relative heart mass and hematocrit of Arctic char exposed to 30 days of cyclic hypoxia. We also measured the hepatic protein synthesis rate, hepatic triglycerides as well as muscle glucose, glycogen and lactate and quantified hepatic metabolites during this treatment. The first days of cyclic hypoxia slightly reduce growth performance with a downward trend in specific growth rate in mass and condition factor variation compared to the control group. This acute exposure also induced a profound metabolome reorganization in the liver with an alteration of amino acid, carbohydrate and lipid metabolisms. However, fish rebalanced their metabolic activities and successfully maintained their growth and energetic reserves after 1 month of cyclic hypoxia. These results demonstrate the impressive ability of Arctic char to cope with its changing environment but also highlight a certain vulnerability of this species during the first days of a cyclic hypoxia event.

6.
Int Immunopharmacol ; 121: 110419, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295028

RESUMEN

The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Araquidonato 5-Lipooxigenasa , Humanos , Araquidonato 5-Lipooxigenasa/metabolismo , Ácidos Cafeicos/farmacología , Lípidos , Inhibidores de la Lipooxigenasa/farmacología
7.
Toxicol In Vitro ; 86: 105505, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36279966

RESUMEN

During aging, the production of androgens by the testis Leydig cells gradually decreases. Phenolic compounds can improve testosterone biosynthesis and delay the onset of hypogonadal symptoms in males. In this study, sinapic acid phenethyl ester was evaluated for its ability to regulate gene expression and steroid production in Leydig cells. Specifically, the effects of this ester on the transcriptome of MA-10 Leydig cells were investigated by RNA-Seq. To better establish a structure-function relationship of the hydroxy-methoxyphenyl moiety of sinapic and phenethyl ester, its influences on gene expression were compared to those of its ferulic acid phenethyl ester analogue. According to the transcriptomic analysis, most genes encoding enzymes related to cholesterol biosynthesis are increased in response to sinapic acid phenethyl ester treatment of MA-10 Leydig cells. Interestingly, treatments with 10 µM of ferulic acid phenethyl ester increased cAMP-dependent Star promoter activation, gene expression and protein levels. In addition, treatments of MA-10 Leydig cells with 10 µM of sinapic or ferulic acid phenethyl ester resulted in increased progesterone production. Thus, our results indicate that sinapic and ferulic acid phenethyl esters can improve cholesterol and steroid biosynthesis in testicular Leydig cells.


Asunto(s)
Células Intersticiales del Testículo , Neoplasias , Masculino , Humanos , Ésteres/metabolismo , Fosfoproteínas/genética , Esteroides , Colesterol/metabolismo , Neoplasias/metabolismo , Progesterona/metabolismo
8.
Insect Biochem Mol Biol ; 152: 103892, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493963

RESUMEN

High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.


Asunto(s)
Dieta Alta en Grasa , Enfermedades Metabólicas , Animales , Ácidos Grasos/metabolismo , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos , Metaboloma , Drosophila/metabolismo
9.
Front Oncol ; 12: 841054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223522

RESUMEN

Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for ß-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.

10.
J Nat Prod ; 85(1): 225-236, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34995066

RESUMEN

Sinapic acid is found in many edible plants and fruits, such as rapeseed, where it is the predominant phenolic compound. New sinapic acid phenethyl ester (SAPE) analogues were synthesized and screened as inhibitors of the biosynthesis of 5-lipoxygenase (5-LO) in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Inhibition of leukotriene biosynthesis catalyzed by 5-LO is a validated therapeutic strategy against certain inflammatory diseases and allergies. Unfortunately, the only inhibitor approved to date has limited clinical use because of its poor pharmacokinetic profile and liver toxicity. With the new analogues synthesized in this study, the role of the phenolic moiety, ester function, and bioisosterism was investigated. Several of the 34 compounds inhibited the biosynthesis of 5-LO products, and 20 compounds were 2-11 times more potent than zileuton in PMNL, which are important producers of 5-LO products. Compounds 5i (IC50: 0.20 µM), 5l (IC50: 0.20 µM), and 5o (IC50: 0.21 µM) bearing 4-trifluoromethyl, methyl, or methoxy substituent at meta-position of the phenethyl moiety were 1.5 and 11.5 times more potent than SAPE (IC50: 0.30 µM) and zileuton (IC50: 2.31 µM), respectively. Additionally, compound 9 (IC50: 0.27 µM), which was obtained after acetylation of the 4-hydroxyl of SAPE, was equivalent to SAPE and 8 times more active than zileuton. Furthermore, compound 20b (IC50: 0.27 µM) obtained after the bioisosteric replacement of the ester function of SAPE by the 1,2,4-oxadiazole heterocycle was equivalent to SAPE and 8 times more active than zileuton. Thus, this study provides a basis for the rational design of new molecules that could be developed further as anti 5-LO therapeutics.


Asunto(s)
Araquidonato 5-Lipooxigenasa/biosíntesis , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Ésteres/química , Células HEK293 , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Alcohol Feniletílico/análogos & derivados , Relación Estructura-Actividad
11.
Mini Rev Med Chem ; 22(11): 1516-1544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34784863

RESUMEN

The hydroxycinnamic acid scaffold is extremely versatile with various biological activities. This review will highlight the progress of the biological activities of hydroxycinnamic acids and their related synthetic analogs, including recently reported anti-cancer, anti-inflammatory, and antioxidant activities.


Asunto(s)
Alcohol Feniletílico , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Ácidos Cafeicos/farmacología , Ácidos Cumáricos/farmacología , Alcohol Feniletílico/farmacología
12.
Eur J Pharmacol ; 913: 174627, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774497

RESUMEN

A series of thiazolidinediones (TZDs) were synthesized and screened for their effect on the mitochondrial respiration as well as on several mitochondrial respiratory system components of Drosophila melanogaster. Substituted and non-substituted 5-benzylidene and 5-benzylthiazolidine-2,4-diones were investigated. The effect of a substitution in position 3, at the nitrogen atom, of the thiozolidine heterocycle was also investigated. The designed TZDs were compared to UK5099, the most potent mitochondrial pyruvate carrier (MPC) inhibitor, in in vitro and in vivo tests. Compared to 5-benzylthiazolidine-2,4-diones 6-7 and 3-benzylthiazolidine-2,4-dione 8, 5-benzylidenethiazolidine-2,4-diones 2-5 showed more inhibitory capacity on mitochondrial respiration. 5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione (3) and 5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5) were among the best compounds that compared well with UK5099. Additionally, TZDs 3 and 5, showed no effects on the non-coupled respiration and weak effects on pathways using substrates such as proline, succinate, and G3P. 5-Benzylidenethiazolidine-2,4-dione 3 showed a positive effect on survival and lifespan when added to Drosophila standard and high fat diet. Interestingly, analog 3 completely reversed the effects of high fat diet on Drosophila longevity and induced metabolic changes which suggests an in vivo inhibition of MPC at the mitochondrial level.


Asunto(s)
Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Acrilatos/farmacología , Acrilatos/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Drosophila melanogaster , Humanos , Concentración 50 Inhibidora , Masculino , Mitocondrias/metabolismo , Modelos Animales , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tiazolidinedionas/síntesis química , Tiazolidinedionas/uso terapéutico
13.
Insect Biochem Mol Biol ; 133: 103556, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33626368

RESUMEN

Metabolic inflexibility is a condition that occurs following a nutritional stress which causes blunted fuel switching at the mitochondrial level in response to hormonal and cellular signalling. Linked to obesity and obesity related disorders, chronic exposure to a high-fat diet (HFD) in animal models has been extensively used to induce metabolic inflexibility and investigate the development of various metabolic diseases. However, many questions concerning the systemic and mitochondrial responses to metabolic inflexibility remain. In this study, we investigated the global and mitochondrial variations following a 10-day exposure to a HFD in adult Drosophila melanogaster. Our results show that following 10-day exposure to the HFD, mitochondrial respiration rates measured in isolated mitochondria at the level of complex I were decreased. This was associated with increased contributions of non-classical providers of electrons to the electron transport system (ETS) such as the proline dehydrogenase (ProDH) and the mitochondrial glycerol-3-phosphate dehydrogenase (mtG3PDH) alleviating complex I dysfunctions, as well as with increased ROS production per molecule of oxygen consumed. Our results also show an accumulation of metabolites from multiple different metabolic pathways in whole adult Drosophila and a drastic shift in the lipid profile which translated into decreased proportion of saturated and monounsaturated fatty acids combined with an increased proportion of polyunsaturated fatty acids. Thus, our results demonstrate the various responses to the HFD treatment in adult Drosophila melanogaster that are hallmarks of the development of metabolic inflexibility and reinforce this organism as a suitable model for the study of metabolic disorders.


Asunto(s)
Dieta Alta en Grasa , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Metabolómica , Modelos Animales , Especies Reactivas de Oxígeno/metabolismo
14.
Andrologia ; 53(2): e13960, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33400304

RESUMEN

Leydig cell tumours represent 1%-3% of all cases of testicular tumours in men. Such tumours respond poorly to radiation or chemotherapy, including bleomycin-etoposide-cisplatin (BEP) combinatorial therapy. In this study, we investigated an alternative approach involving luteolin to improve the efficacy of chemotherapy. LC540 tumour Leydig cells were treated with BEP (bleomycin 40 µg/ml, etoposide 4 µg/ml, cisplatin 8 µg/ml) and/or luteolin 10 µM for comparison with DMSO-treated cells. We performed a transcriptome analysis using RNA-Seq to characterise changes in biological processes and signalling pathways. Treatments of LC540 tumour Leydig cells with luteolin significantly decreased the expression of genes involved in cholesterol biosynthesis, while increasing the expression of genes related to glutathione conjugation (p < .05). Genes being significantly upregulated in response to BEP treatment were involved in the response to toxic substances and transcriptional regulation. Oppositely, genes being significantly downregulated by BEP treatment were enriched for intracellular signal transduction, cell migration, cell adhesion, reproductive system development and cholesterol biosynthesis. BEP chemotherapy proved to be effective in increasing gene expression related to apoptosis of tumour Leydig cells. However, addition of luteolin to BEP treatment had no other effects on biological processes or pathways related to cancer treatment.


Asunto(s)
Cisplatino , Neoplasias Testiculares , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bleomicina/farmacología , Bleomicina/uso terapéutico , Cisplatino/farmacología , Etopósido/farmacología , Etopósido/uso terapéutico , Humanos , Células Intersticiales del Testículo , Luteolina/farmacología , Luteolina/uso terapéutico , Masculino , Ratas , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Transcriptoma
15.
Curr Issues Mol Biol ; 44(1): 73-93, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35723385

RESUMEN

In aging males, androgen production by testicular Leydig cells decreases at a rate of approximately 1% per year. Phenolic compounds may enhance testosterone biosynthesis and delay the onset of male hypogonadism. Gigantol is a bibenzyl compound isolated from several types of orchids of the genus Dendrobium. This compound has various biological activities, including antioxidant activity. However, its capacity to regulate gene expression and steroid production in testicular Leydig cells has never been evaluated. We investigated the effect of gigantol on MA-10 Leydig cells' gene expression using an RNA-Seq approach. To further investigate the structure-function relationship of the hydroxy-methoxyphenyl moiety of gigantol, experiments were also performed with ferulic acid and isoferulic acid. According to transcriptomic analysis, all genes coding for cholesterol biosynthesis-related enzymes are increased in response to gigantol treatment, resulting in increased lipid droplets accumulation. Moreover, treatments with 10 µM gigantol increased StAR protein levels and progesterone production from MA-10 Leydig cells. However, neither ferulic acid nor isoferulic acid influenced StAR protein synthesis and progesterone production in MA-10 Leydig cells. Thus, our findings indicate that gigantol improves cholesterol and steroid biosynthesis within testicular Leydig cells.

16.
J Nat Prod ; 83(12): 3526-3535, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33210536

RESUMEN

Caffeic acid phenethyl ester (CAPE, 2), a natural compound from propolis, is a well-documented antitumor agent with nuclear factor kappa B (NF-κB) inhibitory activity. Key transcription factors regulated by NF-κB, namely, interferon regulatory factor-4 (IRF4) and octameric binding protein-2 (OCT2), are implicated in the tumorigenesis of multiple myeloma (MM), an incurable bone marrow cancer. Adverse effects and resistance to current chemotherapeutics pose a great challenge for MM treatment. Hence, the structure-activity relationships of CAPE (2) and 21 of its analogues were evaluated for their antimyeloma potential. Preclinical evaluation revealed that CAPE (2) and the 3-phenylpropyl (4), 2,5-dihydroxycinnamic acid 3-phenylpropyl ester (17), and 3,4-dihydroxycinnamic ether (22) analogues inhibited human myeloma cell growth. Analogue 4 surpassed CAPE (2) and lenalidomide in showing strong apoptotic effects with a remarkable decrease in IRF4 levels. The analogue 17 exhibited the most potent anti-MM activity. The downregulation of specificity protein 1 (Sp1) and the IKZF1-IRF4-MYC axis by CAPE (2) analogues 4 and 17 revealed their novel mechanism of action. The analogues showed no adverse cytotoxic effects on normal human cells and exhibited appropriate in silico pharmacokinetic properties and drug-likeness. These findings suggest the promising application of CAPE (2) analogues to target Ikaros (IKZF1)/IRF4 addiction, the so-called Achilles heel of myeloma, for better treatment outcomes.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Ácidos Cafeicos/farmacología , Regulación hacia Abajo , Genes myc , Factor de Transcripción Ikaros/metabolismo , Factores Reguladores del Interferón/metabolismo , Mieloma Múltiple/patología , Alcohol Feniletílico/análogos & derivados , Factor de Transcripción Sp1/metabolismo , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/química , Línea Celular Tumoral , Humanos , Lenalidomida/farmacología , Mieloma Múltiple/metabolismo , Alcohol Feniletílico/química , Alcohol Feniletílico/farmacología , Relación Estructura-Actividad
17.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066378

RESUMEN

A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton's (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters' ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton's (1) benzo[b]thiophene and sinapic acid phenethyl ester's (2) α,ß-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton's (1) hydroxyurea subunit was inactive. This result shows that the zileuton's (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π-π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π-π interaction with Phe177 which may play a part in product specificity as reported.


Asunto(s)
Ácidos Cumáricos/química , Hidroxiurea/análogos & derivados , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Simulación por Computador , Evaluación Preclínica de Medicamentos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Células HEK293 , Humanos , Hidroxiurea/química , Inhibidores de la Lipooxigenasa/síntesis química , Simulación del Acoplamiento Molecular , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Relación Estructura-Actividad
18.
Metabolites ; 10(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066485

RESUMEN

Excess dietary carbohydrates are linked to dysregulation of metabolic pathways converging to mitochondria and metabolic inflexibility. Here, we determined the role of the mitochondrial pyruvate carrier (MPC) in the occurrence of this metabolic inflexibility in wild-type (WT) and MPC1-deficient (MPC1def) flies that were exposed to diets with different sucrose concentrations for 15-25 days (Standard Diet: SD, Medium-Sucrose Diet: MSD, and High-Sucrose Diet: HSD). Our results showed that MPC1def flies had lower mitochondrial respiration rates than WT flies on the SD and MSD. However, when exposed to the HSD, WT flies displayed decreased mitochondrial respiration rates compared to MPC1def flies. WT flies exposed to the HSD also displayed increased proline contribution and slightly decreased MPC1 expression. Surprisingly, when fed the MSD and the HSD, few metabolites were altered in WT flies whereas MPC1def flies display significant accumulation of glycogen, glucose, fructose, lactate, and glycerol. Overall, this suggests that metabolic inflexibility starts to occur in WT flies after 15-25 days of exposure to the HSD whereas the MPC1def flies display metabolic inflexibility independently of the diet provided. This study thus highlights the involvement of MPC as an essential protein in Drosophila to maintain proper metabolic homeostasis during changes in dietary resources.

19.
Metabolites ; 10(9)2020 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32899962

RESUMEN

In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, Drosophila melanogaster, differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1def). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1def flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1def flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis.

20.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455632

RESUMEN

Soxhlet (SE), microwave-assisted (MAE) and ultrasound-assisted (UAE) extraction were compared using ten extraction solvents for their efficiency to extract phenolic and flavonoid antioxidants from Eastern Canada propolis. Extracts were compared for total phenolic (TPC) and total flavonoid (TFC) content, and radical scavenging activities. Anti-inflammatory activity through inhibition of 5-lipoxygenase (5-LO) products biosynthesis in HEK293 cells was also evaluated. The results showed that SE extracts using polar solvents had the highest TPC and TFC. Extracts obtained with ethanol, methanol and acetone were effective free radical scavengers, and showed 5-LO inhibition similar to zileuton. UAE was an effective extraction method since the extracts obtained were comparable to those using SE and the MAE while being done at room temperature. With UAE, extracts of less polar solvents showed similar free radical scavenging and 5-LO inhibition to extracts of much more polar solvents such as methanol or ethanol. Reversed-phase liquid chromatography tandem mass spectrometry confirmed the presence of 21 natural compounds in the propolis extracts based on the comparison of intact mass, chromatographic retention time and fragmentation patterns derived from commercial analytical standards. The current study is the first of its kind to concurrently investigate solvent polarity as well as extraction techniques of propolis.


Asunto(s)
Antioxidantes/química , Productos Biológicos/química , Inhibidores de la Lipooxigenasa/química , Própolis/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa/química , Productos Biológicos/clasificación , Productos Biológicos/aislamiento & purificación , Células HEK293 , Humanos , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Inhibidores de la Lipooxigenasa/farmacología , Fenoles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Própolis/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA