Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
J Phys Chem B ; 128(32): 7803-7812, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106822

RESUMEN

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn (1) or a hooked bdppz (2) benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 yields a dppn-based metal-to-ligand charge-transfer (MLCT) state, which in turn populates a dppn intraligand (3IL) state. In contrast, photoexcitation of 2 results in an MLCT state on the TAP ligand and not the intercalating bdppz ligand. Both 1 and 2 bind strongly to double-stranded guanine-rich DNA with a loss of emission. Combined TrA and time-resolved infrared (TRIR) spectroscopy confirms formation of the guanine radical cation when 2 is bound to the d(G5C5)2 duplex, which is not the case when 1 is bound to the same duplex and indicates a different mechanism of action in DNA. Utilizing the long-lived triplet excited lifetime, we show good uptake and localization of 2 in live cells as well as isolated chromosomes. The observed shortening of the excited-state lifetime of 2 when internalized in cell chromosomes is consistent with DNA binding and luminescent quenching due to guanine photo-oxidation.


Asunto(s)
ADN , Guanina , Sustancias Intercalantes , Rutenio , ADN/química , ADN/metabolismo , Guanina/química , Rutenio/química , Ligandos , Sustancias Intercalantes/química , Humanos , Isomerismo , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Piridinas/química , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Estructura Molecular , Células HeLa
2.
Chem Sci ; 15(24): 9183-9191, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903207

RESUMEN

Mn-catalysed reactions offer great potential in synthetic organic and organometallic chemistry and the success of Mn carbonyl complexes as (pre)catalysts hinges on their stabilisation by strong field ligands enabling Mn(i)-based, redox neutral, catalytic cycles. The mechanistic processes underpinning the activation of the ubiquitous Mn(0) (pre)catalyst [Mn2(CO)10] in C-H bond functionalisation reactions is now reported for the first time. By combining time-resolved infra-red (TRIR) spectroscopy on a ps-ms timescale and in operando studies using in situ infra-red spectroscopy, insight into the microscopic bond activation processes which lead to the catalytic activity of [Mn2(CO)10] has been gained. Using an exemplar system, based on the annulation between an imine, 1, and Ph2C2, 2, TRIR spectroscopy enabled the key intermediate [Mn2(CO)9(1)], formed by CO loss from [Mn2(CO)10], to be identified. In operando studies demonstrate that [Mn2(CO)9(1)] is also formed from [Mn2(CO)10] under the catalytic conditions and is converted into a mononuclear manganacycle, [Mn(CO)4(C^N)] (C^N = cyclometallated imine), a second molecule of 1 acts as the oxidant which is, in turn, reduced to an amine. As [Mn(CO)4(C^N)] complexes are catalytically competent, a direct route from [Mn2(CO)10] into the Mn(i) catalytic reaction coordinate has been determined. Critically, the mechanistic differences between [Mn2(CO)10] and Mn(i) (pre)catalysts have been delineated, informing future catalyst screening studies.

3.
J Phys Chem Lett ; 15(26): 6826-6834, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38916593

RESUMEN

Resonance Raman spectroscopy can provide insights into complex reaction mechanisms by selectively enhancing the signals of specific molecular species. In this work, we demonstrate that, by changing the excitation wavelength, Raman bands of different intermediates in the methanol-to-hydrocarbons reactions can be identified. We show in particular how UV excitation enhances signals from short-chain olefins and cyclopentadienyl cations during the induction period, while visible excitation better detects later-stage aromatics. However, visible excitation is prone to fluorescence that can obscure Raman signals, and hence, we show how fast fluorescence rejection techniques like Kerr gating are necessary for extracting useful information from visible excitation measurements.

4.
Chem Sci ; 15(10): 3453-3465, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455000

RESUMEN

Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 µJ, 2.8 µm laser pulses from a Nd:YAG-pumped optical parametric oscillator were observed to induce temperature-jumps (T-jumps) in zeolite pellets in nanoseconds, with the sample cooling over 1-3 ms. By adopting a tightly focused beam geometry, T-jumps as large as 145 °C from the starting temperature were achieved, demonstrated through comparison of the TR-IR spectra with temperature dependent IR absorption spectra and three dimensional heat transfer modelling using realistic experimental parameters. The simulations provide a detailed understanding of the temperature distribution within the sample and its evolution over the cooling period, which we observe to be bi-exponential. These results provide foundations for determining the magnitude of a T-jump in a catalyst/adsorbate system from its absorption spectrum and physical properties, and for applying T-jump TR-IR spectroscopy to the study of reactive chemistry in heterogeneous catalysts.

5.
Sci Rep ; 13(1): 18874, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914852

RESUMEN

We report on an ultrafast infrared optical parametric chirped-pulse amplifier (OPCPA), pumped by a 200-W thin-disk Yb-based regenerative amplifier at a repetition rate of 100 kHz. The OPCPA is tunable in the spectral range 1.4-3.9 [Formula: see text]m, generating up to 23 W of < 100-fs signal and 13 W of < 200-fs idler pulses for infrared spectroscopy, with additional spectral filtering capabilities for Raman spectroscopy. The OPCPA can also yield 19 W of 49-fs 1.75-[Formula: see text]m signal or 5 W of 62-fs 2.8-[Formula: see text]m idler pulses with active carrier-to-envelope-phase (CEP) stabilisation for high-harmonic generation (HHG). We illustrate the versatility of the laser design, catering to various experimental requirements for probing ultrafast science.

6.
J Phys Chem Lett ; 14(44): 9794-9803, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37883808

RESUMEN

Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order. Polaron formation and decay were monitored through evolution of IR-active vibrational modes that interfere with mid-IR polaron electronic absorption giving rise to Fano-antiresonances. Selective UV excitation of ssDNAs revealed that stacking interactions between thiophene rings and nucleic acid bases can promote the formation of an intermolecular charge transfer complex. The findings inform designers of functional conjugated polymers by identifying that involvement of the scaffold in the photophysics needs to be considered when developing such structures for optoelectronic applications.


Asunto(s)
ADN de Cadena Simple , Polielectrolitos , Espectrofotometría Infrarroja
7.
J Am Chem Soc ; 145(39): 21344-21360, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37736878

RESUMEN

The nitrile containing Ru(II)polypyridyl complex [Ru(phen)2(11,12-dCN-dppz)]2+ (1) is shown to act as a sensitive infrared probe of G-quadruplex (G4) structures. UV-visible absorption spectroscopy reveals enantiomer sensitive binding for the hybrid htel(K) and antiparallel htel(Na) G4s formed by the human telomer sequence d[AG3(TTAG3)3]. Time-resolved infrared (TRIR) of 1 upon 400 nm excitation indicates dominant interactions with the guanine bases in the case of Λ-1/htel(K), Δ-1/htel(K), and Λ-1/htel(Na) binding, whereas Δ-1/htel(Na) binding is associated with interactions with thymine and adenine bases in the loop. The intense nitrile transient at 2232 cm-1 undergoes a linear shift to lower frequency as the solution hydrogen bonding environment decreases in DMSO/water mixtures. This shift is used as a sensitive reporter of the nitrile environment within the binding pocket. The lifetime of 1 in D2O (ca. 100 ps) is found to increase upon DNA binding, and monitoring of the nitrile and ligand transients as well as the diagnostic DNA bleach bands shows that this increase is related to greater protection from the solvent environment. Molecular dynamics simulations together with binding energy calculations identify the most favorable binding site for each system, which are in excellent agreement with the observed TRIR solution study. This study shows the power of combining the environmental sensitivity of an infrared (IR) probe in its excited state with the TRIR DNA "site effect" to gain important information about the binding site of photoactive agents and points to the potential of such amplified IR probes as sensitive reporters of biological environments.


Asunto(s)
Rutenio , Humanos , Rutenio/química , Vibración , ADN/química , Sitios de Unión , Nitrilos
8.
Phys Chem Chem Phys ; 25(34): 23316-23317, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37594131

RESUMEN

Correction for 'Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics' by Páraic M. Keane et al., Phys. Chem. Chem. Phys., 2022, 24, 27524-27531, https://doi.org/10.1039/D2CP04604K.

9.
Organometallics ; 42(14): 1766-1773, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502314

RESUMEN

An investigation into species formed following precatalyst activation in Mn-catalyzed C-H bond functionalization reactions is reported. Time-resolved infrared spectroscopy demonstrates that light-induced CO dissociation from precatalysts [Mn(C^N)(CO)4] (C^N = cyclometalated 2-phenylpyridine (1a), cyclometalated 1,1-bis(4-methoxyphenyl)methanimine (1b)) in a toluene solution of 2-phenylpyridine (2a) or 1,1-bis(4-methoxyphenyl)methanimine (2b) results in the initial formation of solvent complexes fac-[Mn(C^N)(CO)3(toluene)]. Subsequent solvent substitution on a nanosecond time scale then yields fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)], respectively. When the experiments are performed in the presence of phenylacetylene, the initial formation of fac-[Mn(C^N)(CO)3(toluene)] is followed by a competitive substitution reaction to give fac-[Mn(C^N)(CO)3(2)] and fac-[Mn(C^N)(CO)3(η2-PhC2H)]. The fate of the reaction mixture depends on the nature of the nitrogen-containing substrate used. In the case of 2-phenylpyridine, migratory insertion of the alkyne into the Mn-C bond occurs, and fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] remains unchanged. In contrast, when 2b is used, substitution of the η2-bound phenylacetylene by 2b occurs on a microsecond time scale, and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)] is the sole product from the reaction. Calculations with density functional theory indicate that this difference in behavior may be correlated with the different affinities of 2a and 2b for the manganese. This study therefore demonstrates that speciation immediately following precatalyst activation is a kinetically controlled event. The most dominant species in the reaction mixture (the solvent) initially binds to the metal. The subsequent substitution of the metal-bound solvent is also kinetically controlled (on a ns time scale) prior to the thermodynamic distribution of products being obtained.

10.
Appl Spectrosc ; 77(6): 666-681, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37194289

RESUMEN

Raman spectroscopy has found its way into a wide range of applications and is successfully applied for qualitative and quantitative studies. Despite significant technical progress over the last few decades, there are still some challenges that limit its more widespread usage. This paper presents a holistic approach to addressing simultaneously the problems of fluorescence interference, sample heterogeneity, and laser-induced sample heating. Long wavelength shifted excitation Raman difference spectroscopy (SERDS) at 830 nm excitation combined with wide-area illumination and sample rotation is presented as a suitable approach for the investigation of selected wood species. Wood as a natural specimen represents a well-suited model system for our study as it is fluorescent, heterogeneous, and susceptible to laser-induced modifications. Two different subacquisition times (50 and 100 ms) and two sample rotation speeds (12 and 60 r/min) were exemplarily assessed. Results demonstrate that SERDS can effectively separate the Raman spectroscopic fingerprints of the wood species balsa, beech, birch, hickory, and pine from intense fluorescence interference. Sample rotation in conjunction with 1 mm-diameter wide-area illumination was suitable to obtain representative SERDS spectra of the wood species within 4.6 s. Using partial least squares discriminant analysis, a classification accuracy of 99.4% for the five investigated wood species was realized. This study highlights the large potential of SERDS combined with wide-area illumination and sample rotation for the effective analysis of fluorescent, heterogeneous, and thermally sensitive specimens in a wide range of application areas.


Asunto(s)
Espectrometría Raman , Madera , Espectrometría Raman/métodos , Iluminación , Rotación , Análisis Discriminante
11.
Chemistry ; 29(25): e202203038, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625067

RESUMEN

Mn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4 , opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds.

12.
Chemistry ; 29(11): e202203250, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36398697

RESUMEN

G-quadruplexes are emerging targets in cancer research and understanding how diagnostic probes bind to DNA G-quadruplexes in solution is critical to the development of new molecular tools. In this study the binding of an enantiopure NIR emitting [Os(TAP)2 (dppz)]2+ complex to different G-quadruplex structures formed by human telomer (hTel) and cMYC sequences in solution is reported. The combination of NMR and time-resolved infrared spectroscopic techniques reveals the sensitivity of the emission response to subtle changes in the binding environment of the complex. Similar behaviour is also observed for the related complex [Os(TAP)2 (dppp2)]2+ upon quadruplex binding.


Asunto(s)
G-Cuádruplex , Osmio , Humanos , ADN/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
13.
Phys Chem Chem Phys ; 24(44): 27524-27531, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345709

RESUMEN

Cationic porphyrins based on the 5,10,15,20-meso-(tetrakis-4-N-methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In D2O solution (where the metal-free form exists as D2TMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm-1) following pulsed laser excitation in their Soret B-absorption bands. Density functional theory calculations reveal that vibrations centred on the methylpyridinium groups are responsible for the dominant feature at ca. 1640 cm-1. TRIR spectra of D2TMPyP4 or PtTMPyP4 in the presence of guanosine 5'-monophosphate (GMP), double-stranded {d(GC)5}2 or {d(CGCAAATTTGCG)}2 contain negative-going signals, 'bleaches', indicative of binding close to guanine. TRIR signals for D2TMPyP4 or PtTMPyP bound to the quadruplex-forming cMYC sequence {d(TAGGGAGGG)}2T indicate that binding occurs on the stacked guanines. For D2TMPyP4 bound to guanine-containing systems, the TRIR signal at ca. 1640 cm-1 decays on the picosecond timescale, consistent with electron transfer from guanine to the singlet excited state of D2TMPyP4, although IR marker bands for the reduced porphyrin/oxidised guanine were not observed. When PtTMPyP is incorporated into HeLa tumour cells, TRIR studies show protein binding with time-dependent ps/ns changes in the amide absorptions demonstrating TRIR's potential for studying light-activated molecular processes not only with nucleic acids in solution but also in biological cells.


Asunto(s)
Ácidos Nucleicos , Porfirinas , Electrones , Sitios de Unión , Guanina
14.
Chem Sci ; 13(34): 9902-9913, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36199635

RESUMEN

Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps.

15.
Phys Chem Chem Phys ; 24(40): 24767-24783, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200672

RESUMEN

Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation.


Asunto(s)
Hidrogenasas , Hidrogenasas/química , Dominio Catalítico , Escherichia coli/metabolismo , Ligandos , Cianuros/química , Espectrofotometría Infrarroja/métodos , Proteínas
16.
ACS Chem Biol ; 17(9): 2643-2654, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36038143

RESUMEN

The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.


Asunto(s)
Adenilil Ciclasas , Flavina-Adenina Dinucleótido , Adenosina Trifosfato , Adenilil Ciclasas/genética , Aminoácidos , Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavinas/química , Luz , Mutagénesis , Protones , Análisis Espectral , Tirosina
17.
Analyst ; 147(15): 3464-3469, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35833538

RESUMEN

Binding of drugs to blood serum proteins can influence both therapeutic efficacy and toxicity. The ability to measure the concentrations of protein-bound drug molecules quickly and with limited sample preparation could therefore have considerable benefits in biomedical and pharmaceutical applications. Vibrational spectroscopies provide data quickly but are hampered by complex, overlapping protein amide I band profiles and water absorption. Here, we show that two-dimensional infrared (2D-IR) spectroscopy can achieve rapid detection and quantification of paracetamol binding to serum albumin in blood serum at physiologically-relevant levels with no additional sample processing. By measuring changes to the amide I band of serum albumin caused by structural and dynamic impacts of paracetamol binding we show that drug concentrations as low as 7 µM can be detected and that the availability of albumin for paracetamol binding is less than 20% in serum samples, allowing identification of paracetamol levels consistent with a patient overdose.


Asunto(s)
Acetaminofén , Suero , Amidas , Proteínas Sanguíneas , Humanos , Albúmina Sérica , Espectrofotometría Infrarroja
18.
Inorg Chem ; 61(6): 2745-2759, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905688

RESUMEN

Binuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades. Visible light irradiation prepares the 1dσ*pσ state that, after one or two (sub)picosecond relaxation steps, undergoes 70-1300 ps intersystem crossing to 3dσ*pσ, which is faster for the more flexible dimen complexes. UV-excited 1,3dπpσ states decay with (sub)picosecond kinetics through a manifold of high-lying triplet and mixed-spin states to 3dσ*pσ with lifetimes in the range of 6-19 ps (316 nm) and 19-43 ps (375 nm, Ir only), bypassing 1dσ*pσ. Most excited-state conversion and some relaxation steps are accompanied by direct decay to the ground state that is especially pronounced for the most flexible long/eclipsed Rh(dimen) conformer.

19.
J Phys Chem B ; 125(51): 13858-13867, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34914398

RESUMEN

Excited-state character and dynamics of two 6-(dimethylamino)-2-acylnaphthalene dyes (Prodan and Badan-SCH2CH2OH) were studied by picosecond time-resolved IR spectroscopy (TRIR) in solvents of different polarity and relaxation times: hexane, CD3OD, and glycerol-d8. In all these solvents, near-UV excitation initially produced the same S1(ππ*) excited state characterized by a broad TRIR signal. A very fast decay (3, ∼100 ps) followed in hexane, whereas conversion to a distinct IR spectrum with a ν(C═O) band downshifted by 76 cm-1 occurred in polar/H-bonding solvents, slowing down on going from CD3OD (1, 23 ps) to glycerol-d8 (5.5, 51, 330 ps). The final relaxed excited state was assigned as planar Me2N → C═O intramolecular charge transfer S1(ICT) by comparing experimental and TDDFT-calculated spectra. TRIR conversion kinetics are comparable to those of early stages of multiexponential fluorescence decay and dynamic fluorescence red-shift. This work presents a strong evidence that Prodan-type dyes undergo solvation-driven charge separation in their S1 state, which is responsible for the dynamic fluorescence Stokes shift observed in polar/H-bonding solvents. The time evolution of the optically prepared S1(ππ*) state to the S1(ICT) final state reflects environment relaxation and solvation dynamics. This finding rationalizes the widespread use of Prodan-type dyes as probes of environment dynamics and polarity.


Asunto(s)
Colorantes Fluorescentes , 2-Naftilamina/análogos & derivados , Cinética , Solventes , Análisis Espectral
20.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556577

RESUMEN

Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 µm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-µs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.


Asunto(s)
Grupo Citocromo c/metabolismo , Citocromos/metabolismo , Electrones , Hemo/metabolismo , Histidina/metabolismo , Metionina/metabolismo , Shewanella/metabolismo , Grupo Citocromo c/química , Citocromos/química , Transporte de Electrón , Hemo/química , Histidina/química , Metionina/química , Simulación de Dinámica Molecular , Nanocables , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA