Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 119, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951925

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases. METHODS: To overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline. RESULTS: FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy. CONCLUSIONS: This proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.


Asunto(s)
Bacteriófagos , Clostridioides difficile , Infecciones por Clostridium , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Trasplante de Microbiota Fecal/métodos , Animales , Ratones , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Infecciones por Clostridium/terapia , Infecciones por Clostridium/microbiología , Heces/microbiología , Heces/virología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Femenino
2.
Nutr Rev ; 80(5): 1311-1339, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34957513

RESUMEN

CONTEXT: Moderate alcohol consumption is associated with decreased risk of cardiovascular disease (CVD) and improvement in cardiovascular risk markers, including lipoproteins and lipoprotein subfractions. OBJECTIVE: To systematically review the relationship between moderate alcohol intake, lipoprotein subfractions, and related mechanisms. DATA SOURCES: Following PRISMA, all human and ex vivo studies with an alcohol intake up to 60 g/d were included from 8 databases. DATA EXTRACTION: A total of 17 478 studies were screened, and data were extracted from 37 intervention and 77 observational studies. RESULTS: Alcohol intake was positively associated with all HDL subfractions. A few studies found lower levels of small LDLs, increased average LDL particle size, and nonlinear relationships to apolipoprotein B-containing lipoproteins. Cholesterol efflux capacity and paraoxonase activity were consistently increased. Several studies had unclear or high risk of bias, and heterogeneous laboratory methods restricted comparability between studies. CONCLUSIONS: Up to 60 g/d alcohol can cause changes in lipoprotein subfractions and related mechanisms that could influence cardiovascular health. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. 98955.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas , Consumo de Bebidas Alcohólicas/efectos adversos , Apolipoproteínas B , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , HDL-Colesterol , Humanos , Lipoproteínas LDL
3.
Front Nutr ; 8: 651199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718425

RESUMEN

Insulin resistance in obesity coincides with abnormalities in lipid profile and lipoprotein subclass distribution and size even before abnormalities in glucose homeostasis manifest. We aimed to assess this relationship in the absence of obesity. Insulin sensitivity (3-h intravenous glucose tolerance test and minimal modeling) and lipoprotein particle concentrations and sizes (proton nuclear magnetic resonance spectroscopy) were evaluated in 15 insulin-resistant and 15 insulin-sensitive lean Asians of Chinese descent with normal glucose tolerance, matched on age, sex, and body mass index. Despite a ~50% lower insulin sensitivity index (Si) in insulin-resistant than in insulin-sensitive subjects, which was accompanied by significantly greater acute insulin response to glucose (AIRg) and fasting insulin concentration but not different fasting glucose concentration, there were no significant differences between groups in the blood lipid profile (p ≥ 0.44) or the lipoprotein subclass concentrations (p ≥ 0.30) and particle sizes (p ≥ 0.43). We conclude that, contrary to observations in subjects with obesity, insulin resistance is not accompanied by unfavorable changes in the plasma lipid profile and lipoprotein particle concentrations and sizes in lean Asians with normal glucose tolerance. Therefore, insulin resistance at the level of glucose metabolism is mechanistically or temporally dissociated from lipid and lipoprotein metabolism. Trial Registration: clinicaltrials.gov, NCT03264001.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA