Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Peripher Nerv Syst ; 29(2): 279-285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874107

RESUMEN

AIM: Biallelic mutations in the PTRH2 gene have been associated with infantile multisystem neurological, endocrine, and pancreatic disease (IMNEPD), a rare autosomal recessive disorder of variable expressivity characterized by global developmental delay, intellectual disability or borderline IQ level, sensorineural hearing loss, ataxia, and pancreatic insufficiency. Various additional features may be included, such as peripheral neuropathy, facial dysmorphism, hypothyroidism, hepatic fibrosis, postnatal microcephaly, cerebellar atrophy, and epilepsy. Here, we report the first Italian family presenting only predominant neurological features. METHODS: Extensive neurological and neurophysiological evaluations have been conducted on the two affected brothers and their healthy mother since 1996. The diagnosis of peripheral neuropathy of probable hereditary origin was confirmed through a sural nerve biopsy. Exome sequencing was performed after the analysis of major neuropathy-associated genes yielded negative results. RESULTS: Whole-exome sequencing analysis identified the homozygous substitution c.256C>T (p.Gln86Ter) in the PTRH2 gene in the two siblings. According to American College of Medical Genetics and Genomics (ACMG) guidelines, the variant has been classified as pathogenic. At 48 years old, the proband's reevaluation confirmed a demyelinating sensorimotor polyneuropathy with bilateral sensorineural hearing loss that had been noted since he was 13. Additionally, drug-resistant epileptic seizures occurred when he was 32 years old. No hepatic or endocrinological signs developed. The younger affected brother, 47 years old, has an overlapping clinical presentation without epilepsy. INTERPRETATION: Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants. We thereby hope to better define IMNEPD and facilitate the identification and diagnosis of this novel disease entity.


Asunto(s)
Enfermedades Pancreáticas , Humanos , Masculino , Italia , Femenino , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/fisiopatología , Persona de Mediana Edad , Codón sin Sentido , Linaje , Adulto
2.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318947

RESUMEN

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Asunto(s)
Fenotipo , Humanos , Masculino , Femenino , Niño , Proteínas de Unión al ARN/genética , Estudios de Asociación Genética , Preescolar , Mutación/genética , Adolescente , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Predisposición Genética a la Enfermedad
3.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177406

RESUMEN

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Distroglicanos/genética , Distroglicanos/metabolismo , Haploinsuficiencia , Distrofias Musculares/genética , Músculo Esquelético/patología , Enfermedades Musculares/patología
5.
Epilepsia Open ; 8(4): 1314-1330, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37491868

RESUMEN

OBJECTIVE: NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS: Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS: In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE: We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.


Asunto(s)
Epilepsias Parciales , Epilepsia Parcial Motora , Epilepsia Refleja , Síndromes Epilépticos , Masculino , Femenino , Humanos , Niño , Epilepsias Parciales/genética , Convulsiones/genética , Proteínas Activadoras de GTPasa/genética
6.
Neuropediatrics ; 54(6): 426-429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37257496

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the EMD gene encoding emerin, and the autosomal EDMD2, due to mutations in the LMNA gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2. We report a 13-year-old boy with mild limb girdle muscle weakness, elbow and ankle contractures, with absence of emerin at muscle biopsy, carrying a hemizygous frameshift mutation on the EMD gene (c.153dupC/p.Ser52Glufs*9) of maternal inheritance. Minor cardiac rhythm abnormalities were detected at 24-hour Holter electrocardiogram and required ß-blocker therapy. MRI scan of the thighs showed a mild diffuse involvement, while tibialis anterior, extensor digitorum longus, peroneus longus, and medial gastrocnemius were the most affected muscles in the leg. We also provide a review of the muscular MRI data in EDMD patients and highlight the relative heterogeneity of the MRI patterns found in EDMDs, suggesting that muscle MRI should be studied in larger EDMD cohorts to better define disease patterns and to cover the wide disease spectrum.


Asunto(s)
Contractura , Distrofia Muscular de Emery-Dreifuss , Distrofia Muscular de Emery-Dreifuss Ligada a X , Masculino , Humanos , Niño , Adolescente , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular de Emery-Dreifuss/diagnóstico por imagen , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Mutación , Debilidad Muscular , Imagen por Resonancia Magnética
7.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980803

RESUMEN

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder caused by mutations in NF1 gene, coding for neurofibromin 1. NF1 can be associated with Moyamoya disease (MMD), and this association, typical of paediatric patients, is referred to as Moyamoya syndrome (MMS). MMD is a cerebral arteriopathy characterized by the occlusion of intracranial arteries and collateral vessel formation, which increase the risk of ischemic and hemorrhagic events. RNF213 gene mutations have been associated with MMD, so we investigated whether rare variants of RNF213 could act as genetic modifiers of MMS phenotype in a pediatric cohort of 20 MMS children, 25 children affected by isolated MMD and 47 affected only by isolated NF1. By next-generation re-sequencing (NGS) of patients' DNA and gene burden tests, we found that RNF213 seems to play a role only for MMD occurrence, while it does not appear to be involved in the increased risk of Moyamoya for MMS patients. We postulated that the loss of neurofibromin 1 can be enough for the excessive proliferation of vascular smooth muscle cells, causing Moyamoya arteriopathy associated with NF1. Further studies will be crucial to support these findings and to elucidate the possible role of other genes, enhancing our knowledge about pathogenesis and treatment of MMS.

8.
Front Pediatr ; 11: 1051026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923276

RESUMEN

Neurofibromatosis type 1 (NF1) is a neurocutaneous syndrome caused by pathogenic variants in the NF1 gene, encoding a multidomain inhibitor of Ras activity. Thus, NF1 is considered a RASopathy and drugs targeting the RAS/mitogen-activated protein kinase (MAPK) pathway, such as the MAP kinase (MEK) 1/2 inhibitor Selumetinib, are promising therapeutic options to treat NF1-associated tumors, especially plexiform neurofibromas and optic way gliomas. However, surgical treatment is often required for NF1-related cerebrovascular manifestations, such as moyamoya syndrome (MMS). We report a case of an 8-year-old patient receiving Selumetinib at the dose of 25 mg/m2 orally 2 times a day as a treatment for many plexiform neurofibromas. He suffered from two close strokes and brain MRI revealed a severe cerebral vasculopathy consistent with MMS, with marked stenosis of both the internal carotid arteries. A two-step surgical revascularization procedure was performed, consisting of a direct by-pass with an encephalo-mio-synangiosis (EMS) followed by encephalo-duro-arterio-synangiosis (EDAS). Surprisingly, despite the surgical technical success, follow-up MRI revealed lack of the expected revascularization. Selumetinib is a powerful therapeutic option in the treatment of severe NF1-related tumors. However, our findings suggest that this drug may interfere with cerebral neovascularization in patients with MMS requiring surgical revascularization. This is supported by the crucial role of the Vascular-Endothelial Growth Factor (VEGF), whose signaling pathway involve MAPK, as promoter of the neovascularization. Our observations suggest to adopt an imaging surveillance strategy to prevent unfavorable surgical outcome in patients with NF1-associated MMS receiving Selumetinib, and that priority should be given to surgical revascularization.

9.
Stem Cell Res ; 66: 103007, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580887

RESUMEN

Sotos syndrome (SoS) is a neurodevelopmental disorder caused by haploinsufficiency of the NSD1 gene located on chromosome 5 region q35.3. In order to understand the pathogenesis of Sotos syndrome and in view of future therapeutic approaches for its efficient treatment, we generated two human induced pluripotent stem cells (iPSCs) lines from one SoS patient carrying a 5q35 microdeletion. The established iPSCs expressed pluripotency markers, showing the capacity to differentiate into the three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Sotos , Humanos , Síndrome de Sotos/genética , Síndrome de Sotos/patología , Células Madre Pluripotentes Inducidas/patología , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Haploinsuficiencia
10.
Acta Myol ; 42(4): 113-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38406380

RESUMEN

Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have been identified as a genetic cause of autosomal recessive axonal Charcot-Marie-Tooth disease 2 (CMT2) and distal hereditary motor neuropathy (dHMN). We herein review the main phenotypes associated with SORD mutations and report the case of a 16-year-old man who was referred to our outpatient clinic for a slowly worsening gait disorder with wasting and weakness of distal lower limbs musculature. Since creatine phosphokinase (CPK) values were persistently raised (1.5fold increased) and a Next-Generation Sequencing CMT-associated panel failed in identifying pathogenic variants, a muscle biopsy was performed with evidence of alterations suggestive of a protein surplus distal myopathy. Finally, Whole-Exome Sequencing (WES) identified two pathogenic SORD variants in the heterozygous state: c.458C > A (p.Ala153Asp) and c.757delG (p.Ala253Glnfs*27). This is an isolated report of compound heterozygosity for two SORD mutations associated with clinical and histological signs of skeletal muscle involvement, expanding the phenotypic expression of SORD mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , L-Iditol 2-Deshidrogenasa , Masculino , Humanos , Adolescente , L-Iditol 2-Deshidrogenasa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Músculo Esquelético/patología , Mutación , Fenotipo , Linaje
11.
Acta Myol ; 41(3): 111-116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349186

RESUMEN

Early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) is caused by homozygous or compound heterozygous mutation in the MEGF10 gene (OMIM #614399). Phenotypic spectrum of EMARDD is variable, ranging from severe infantile forms in which patients are ventilator-dependent and die in childhood, to milder chronic disorders with a more favorable course (mild variant, mvEMARDD). Here we describe a 22 years old boy, offspring of consanguineous parents, presenting a congenital myopathic phenotype since infancy with elbow contractures and scoliosis. The patient developed a slowly progressive muscle weakness with impaired walking, rhinolalia, dysphagia, and respiratory involvement, which required noninvasive ventilation therapy since the age of 16 years. First muscle biopsy revealed unspecific muscle damage, with fiber size variation, internal nuclei and fibrosis. Myofibrillar alterations were noted at a second muscle biopsy including whorled fibres, cytoplasmic inclusion and minicores. Exome sequencing identified a homozygous mutation in MEGF10 gene, c.2096G > C (p.Cys699Ser), inherited by both parents. This variant, not reported in public databases of mutations, is expected to alter the structure of the protein and is therefore predicted to be probably damaging according to ACMG classification. In conclusion, we found a new likely pathogenic mutation in MEGF10, which is responsible for a progressive form of mvEMARDD with myofibrillar alterations at muscle biopsy. Interestingly, the presence of MEGF10 mutations has not been reported in Italian population. Early diagnosis of MEGF10 myopathy is essential in light of recent results from in vivo testing demonstrating a potential therapeutic effect of SSRIs compounds.


Asunto(s)
Trastornos de Deglución , Enfermedades Musculares , Miotonía Congénita , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Enfermedades Musculares/diagnóstico , Mutación , Músculo Esquelético/patología
12.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142455

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.


Asunto(s)
Ácido Glutámico , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/genética , Ácido Glutámico/metabolismo , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo
13.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35904184

RESUMEN

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Enfermedad de la Neurona Motora , Enfermedades del Sistema Nervioso Periférico , Humanos , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/genética , Mutación , Esfingolípidos , Serina/química , Serina/genética
14.
Front Immunol ; 13: 869033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655776

RESUMEN

Background: Evans syndrome (ES) is a rare disorder classically defined as the simultaneous or sequential presence of autoimmune haemolytic anaemia and immune thrombocytopenia, but it has also been described as the presence of at least two autoimmune cytopenias. Recent reports have shown that ES is often a manifestation of an underlying inborn error of immunity (IEI) that can benefit from specific treatments. Aims: The aim of this study is to investigate the clinical and immunological characteristics and the underlying genetic background of a single-centre cohort of patients with ES. Methods: Data were obtained from a retrospective chart review of patients with a diagnosis of ES followed in our centre. Genetic studies were performed with NGS analysis of 315 genes related to both haematological and immunological disorders, in particular IEI. Results: Between 1985 and 2020, 40 patients (23 men, 17 women) with a median age at onset of 6 years (range 0-16) were studied. ES was concomitant and sequential in 18 (45%) and 22 (55%) patients, respectively. Nine of the 40 (8%) patients had a positive family history of autoimmunity. Other abnormal immunological features and signs of lymphoproliferation were present in 24/40 (60%) and 27/40 (67%) of cases, respectively. Seventeen out of 40 (42%) children fit the ALPS diagnostic criteria. The remaining 21 (42%) and 2 (5%) were classified as having an ALPS-like and an idiopathic disease, respectively. Eighteen patients (45%) were found to have an underlying genetic defect on genes FAS, CASP10, TNFSF13B, LRBA, CTLA4, STAT3, IKBGK, CARD11, ADA2, and LIG4. No significant differences were noted between patients with or without variant and between subjects with classical ES and the ones with other forms of multilineage cytopenias. Conclusions: This study shows that nearly half of patients with ES have a genetic background being in most cases secondary to IEI, and therefore, a molecular evaluation should be offered to all patients.


Asunto(s)
Anemia Hemolítica Autoinmune , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Proteínas Adaptadoras Transductoras de Señales , Adolescente , Anemia Hemolítica Autoinmune/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos
15.
Muscle Nerve ; 65(1): 96-104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687219

RESUMEN

INTRODUCTION/AIMS: Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. METHODS: We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II-related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. RESULTS: Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. DISCUSSION: We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first-line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedades Musculares , Creatina Quinasa , Variaciones en el Número de Copia de ADN , Electromiografía , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Humanos
16.
Front Neurol ; 12: 735488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675869

RESUMEN

The role of muscle biopsy in the diagnostic workup of floppy infants is controversial. Muscle sampling is invasive, and often, results are not specific. The rapid expansion of genetic approach has made the muscle histopathology analysis less crucial. This study aims to assess the role and efficacy of muscle histopathology in the diagnostic algorithm of hypotonia in early infancy through a retrospective analysis of 197 infants who underwent muscle biopsy in their first 18 months of life. Data analysis revealed that 92/197 (46.7%) of muscle biopsies were non-specific (80) or normal (12), not allowing a specific diagnosis. In 41/197 (20.8%) cases, biopsy suggested a metabolic or mitochondrial myopathy, while in 23/197 cases (11.7%), we found evidence of muscular dystrophy. In 19/197 cases (9.7%), histopathology characteristics of a congenital myopathy were reported. In 22/197 cases (11.7%), the histopathological study indicated presence of a neurogenic damage. Overall, 46 diagnoses were then achieved by oriented genetic tests. Muscle biopsy results were consistent with genetic results in 90% of cases. Diagnostic algorithms for the diagnosis of a floppy infant are largely missing. Muscle biopsy alone can lead to a diagnosis, help the clinician in the choice of a genetic test, or even modify a diagnosis made previously.

17.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34415310

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Femenino , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple
18.
Clin Neuropathol ; 40(6): 310-318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34281632

RESUMEN

AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.


Asunto(s)
Distrofias Musculares , Miositis , Sarcoglicanopatías , Biopsia , Humanos , Músculo Esquelético , Sarcoglicanopatías/genética
19.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919865

RESUMEN

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype-phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype-phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.

20.
Front Genet ; 11: 131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194622

RESUMEN

Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008-2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA