Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 103(6): 063005, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19792563

RESUMEN

We propose and analyze a setup to achieve strong coupling between a single trapped atom and a mechanical oscillator. The interaction between the motion of the atom and the mechanical oscillator is mediated by a quantized light field in a laser driven high-finesse cavity. In particular, we show that high fidelity transfer of quantum states between the atom and the mechanical oscillator is in reach for existing or near future experimental parameters. Our setup provides the basic toolbox from atomic physics for coherent manipulation, preparation, and measurement of micromechanical and nanomechanical oscillators.

2.
Phys Rev Lett ; 92(23): 230401, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15245143

RESUMEN

We report on the first experimental observation of bright matter wave solitons for 87Rb atoms with repulsive atom-atom interaction. This counterintuitive situation arises inside a weak periodic potential, where anomalous dispersion can be realized at the Brillouin zone boundary. If the coherent atomic wave packet is prepared at the corresponding band edge, a bright soliton is formed inside the gap. The strength of our system is the precise control of preparation and real time manipulation, allowing the systematic investigation of gap solitons.

3.
Phys Rev Lett ; 91(6): 060402, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12935059

RESUMEN

We demonstrate the control of the dispersion of matter wave packets utilizing periodic potentials. This is analogous to the technique of dispersion management known in photon optics. Matter wave packets are realized by Bose-Einstein condensates of 87Rb in an optical dipole potential acting as a one-dimensional waveguide. A weak optical lattice is used to control the dispersion relation of the matter waves during the propagation of the wave packets. The dynamics are observed in position space and interpreted using the concept of effective mass. By switching from positive to negative effective mass, the dynamics can be reversed. The breakdown of the approximation of constant, as well as experimental signatures of an infinite effective mass are studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA