Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 8(12): 5275-5280, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094750

RESUMEN

Developing efficient and low-cost water electrolyzers for clean hydrogen production to reduce the carbon footprint of traditional hard-to-decarbonize sectors is a grand challenge toward tackling climate change. Bipolar-based water electrolysis combines the benefits of kinetically more favorable half-reactions and relatively inexpensive cell components compared to incumbent technologies, yet it has been shown to have limited performance. Here, we develop and test a bipolar-interface water electrolyzer (BPIWE) by combining an alkaline anode porous transport electrode with an acidic catalyst-coated membrane. The role of TiO2 as a water dissociation (WD) catalyst is investigated at three representative loadings, which indicates the importance of balancing ionic conductivity and WD activity derived from the electric field for optimal TiO2 loading. The optimized BPIWE exhibits negligible performance degradation up to 500 h at 400 mA cm-2 fed with pure water using earth-abundant anode materials. Our experimental findings provide insights into designing bipolar-based electrochemical devices.

2.
Nat Commun ; 14(1): 4592, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524721

RESUMEN

Clean hydrogen production requires large-scale deployment of water-electrolysis technologies, particularly proton-exchange-membrane water electrolyzers (PEMWEs). However, as iridium-based electrocatalysts remain the only practical option for PEMWEs, their low abundance will become a bottleneck for a sustainable hydrogen economy. Herein, we propose high-performing and durable ionomer-free porous transport electrodes (PTEs) with facile recycling features enabling Ir thrifting and reclamation. The ionomer-free porous transport electrodes offer a practical pathway to investigate the role of ionomer in the catalyst layer and, from microelectrode measurements, point to an ionomer poisoning effect for the oxygen evolution reaction. The ionomer-free porous transport electrodes demonstrate a voltage reduction of > 600 mV compared to conventional ionomer-coated porous transport electrodes at 1.8 A cm-2 and <0.1 mgIr cm-2, and a voltage degradation of 29 mV at average rate of 0.58 mV per 1000-cycles after 50k cycles of accelerated-stress tests at 4 A cm-2. Moreover, the ionomer-free feature enables facile recycling of multiple components of PEMWEs, which is critical to a circular clean hydrogen economy.

3.
Faraday Discuss ; 243(0): 65-76, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37052138

RESUMEN

Mechanocatalytic ammonia synthesis is a novel approach toward ammonia synthesis under mild conditions. However, many open questions remain about the mechanism of mechanocatalytic ammonia synthesis, as well as the structure of the active catalysts during milling. Herein, the structural evolution of an in situ synthesized titanium nitride catalyst is explored during extended milling. The yield of ammonia bound to the catalyst surface was found to strongly correlate with an increase in catalyst surface area during milling, although a lower surface concentration of ammonia at earlier milling times suggests a delay in ammonia formation, corresponding to the conversion of the titanium metal pre-catalyst into the nitride. Small pores develop in the catalyst during milling due to interstitial spaces between agglomerated titanium nitride nanoparticles, as shown by SEM and TEM. In the first 6 h, the titanium is both converted to a nitride and fractured to smaller particles, before an equilibrium state is reached. After 18 h of milling, the catalyst nanoparticles appear to crystallize into a denser material, resulting in a loss of surface area and pore volume.

4.
ChemSusChem ; 13(17): 4624-4632, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32539201

RESUMEN

This work compares the structure of industrially isolated lignin samples from kraft pulping and three alternative processes: butanol organosolv, supercritical water hydrolysis, and sulfur dioxide/ethanol/water fractionation. Kraft processes are known to produce highly condensed lignin, with reduced potential for catalytic depolymerization, whereas the alternative processes have been hypothesized to impact the lignin less. The structural properties most relevant to catalytic depolymerization are characterized by elemental analysis, quantitative 13 C and 2 D HQSC NMR spectroscopy, gel permeation chromatography, and thermogravimetric analysis. Quantification of the ß-O-4 ether bond content shows partial depolymerization, with all samples having less than 12 bonds per 100 aromatic units. This results in theoretical monomer yields of less than 5 %, strongly suggesting the alternative fractionation processes generate highly condensed lignin structures that are no more suitable for catalytic depolymerization than kraft lignin. However, the different thermal degradation profiles suggest there are physicochemical differences that could be leveraged in other valorization strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA