Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phytomedicine ; 132: 155588, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38908194

RESUMEN

BACKGROUND: Illness resulting from influenza is a global health problem that has significant adverse socioeconomic impact. Although various strategies such as flu vaccination have beneficial effects, the risk of this illness has not been eliminated. The use of botanicals may provide a complementary approach by enhancement of the host antiviral immune response. PURPOSE: Generate preclinical data using rodent models to determine the most effective utility of a Limnospira (formerly Arthrospira)-derived oral supplement (Immulina®) for enhancing host immunity to improve antiviral resilience. STUDY DESIGN: Two non-lethal mouse models (prophylactic and therapeutic) were used to evaluate the impact of Immulina® on increasing host resilience against experimental influenza infection. METHODS: Mice were fed Immulina® only for the 2 weeks prior to viral infection (prophylactic regime) or starting 3 days post-viral infection (at the onset of symptoms, therapeutic design). Three doses of Immulina® were evaluated in each model using both female and male mice. RESULTS: Significant protective effect of Immulina® against viral illness was observed in the prophylactic model (improved clinical scores, less body weight loss, decreased lung/body weight ratio, lower lung viral load, and increased lung IFN-γ and IL-6). Substantially less (minimal) protective effect was observed in the therapeutic model. CONCLUSION: This study demonstrates that Immulina® exerts a protective effect against influenza illness when administered using a prophylactic regime and may not be effective if given after the onset of symptoms. The results will help to optimally design future clinical trials.

2.
Phytomedicine ; 132: 155778, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38876006

RESUMEN

BACKGROUND: Immulina®, a dietary supplement derived from Limnospira (formerly Arthrospira), is being investigated as a potential agent to increase antiviral resilience. In our recently published manuscript, we described the effects of Immulina® on influenza when taken daily, beginning before infection (prophylaxis) or after the onset of clinical symptoms of viral illness (therapeutic). However, the benefit of Immulina® in infected individuals before the manifestation of any symptoms (prodromal) has not been investigated yet. PURPOSE: To evaluate Immulina®'s potential use to increase the host antiviral immune response using a prodromal therapy regime. STUDY DESIGN: The efficacy of Immulina® extract was evaluated in rodents using a prodromal protocol (test material administered prior to the emergence of viral illness symptoms). METHODS: Immulina® (25, 50 and 100 mg/kg body weight) was orally administered to both genders of mice, 2 h following influenza A viral infection, and continued daily for 14 days. RESULTS: Compared to the infected control mice, animals fed Immulina® exhibited statistically significant reduction in the emergence of various physical symptoms of viral-induced illness and decreased viral RNA levels. The effects are likely mediated through the host immune system since the level of various cytokines (IL-6 and IFN-γ) were significantly increased in lung tissue. CONCLUSION: This study, together with our previous paper, indicate that Immulina® was most effective at enhancing immune antiviral resilience if administered before or soon after initial infection. The data generated can be used to guide additional research using human subjects.

3.
J Diet Suppl ; 21(2): 154-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37070414

RESUMEN

Dectin-1 expressed on host immune cells recognizes ß-glucans within the cell walls of fungal pathogens and plays an important role in the clearance of fungal infections. However, because ß-glucan is masked by an outer layer of mannoproteins, fungal pathogens can evade detection by host immune cells. In this study, a microplate-based screen was developed to identify ß-glucan unmasking activity exhibited by botanicals. This screen measures the activity of a reporter gene in response to the transcriptional activation of NF-κB due to the interaction between ß-glucan on the fungal cell surface and Dectin-1 present on host immune cells. In this proof-of-concept study, we screened a collection of botanicals (10 plants and some of their reported pure compound actives) used in traditional medicine for their antifungal properties. Several hits were identified in samples that unmasked ß-glucan at sub-inhibitory concentrations. The hit samples were confirmed by fluorescent staining with a ß-glucan antibody, verifying that the samples identified in the screen did indeed unmask ß-glucan. These results indicate that the purported antifungal activities attributed to some botanicals may be due, at least in part, to the presence of compounds that exhibit ß-glucan unmasking activity. Enhanced exposure of cell wall ß-glucans would allow the host to build resilience against fungal infections by helping the immune system to detect the pathogen and mount a more effective clearance mechanism. This screen, together with direct killing/growth inhibition assays, may therefore serve as a valuable tool for substantiating the use of botanicals in preventing and/or treating fungal infections.


Asunto(s)
Micosis , beta-Glucanos , Humanos , Antifúngicos/farmacología , Bioensayo , Cinética
4.
ACS Infect Dis ; 9(11): 2282-2298, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788674

RESUMEN

The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Antituberculosos/farmacología , Mamíferos , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
5.
Antibiotics (Basel) ; 12(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627738

RESUMEN

Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization-probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC.

6.
Pharm Res ; 40(12): 2917-2933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37468827

RESUMEN

PURPOSE: To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. METHOD: Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. RESULTS: Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. CONCLUSION: Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.


Asunto(s)
Dióxido de Silicio , Dióxido de Silicio/química , Polvos/química , Tamaño de la Partícula , Interacciones Hidrofóbicas e Hidrofílicas , Composición de Medicamentos
7.
Chem Biodivers ; 20(9): e202300903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37505806

RESUMEN

Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.


Asunto(s)
Capparis , Dietilhexil Ftalato , Humanos , Plastificantes/toxicidad , Plastificantes/análisis , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análisis , Plantas , Hojas de la Planta/química
8.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175448

RESUMEN

Since aerobic glycolysis was first observed in tumors almost a century ago by Otto Warburg, the field of cancer cell metabolism has sparked the interest of scientists around the world as it might offer new avenues of treatment for malignant cells. Our current study claims the discovery of gnetin H (GH) as a novel glycolysis inhibitor that can decrease metabolic activity and lactic acid synthesis and displays a strong cytostatic effect in melanoma and glioblastoma cells. Compared to most of the other glycolysis inhibitors used in combination with the complex-1 mitochondrial inhibitor phenformin (Phen), GH more potently inhibited cell growth. RNA-Seq with the T98G glioblastoma cell line treated with GH showed more than an 80-fold reduction in thioredoxin interacting protein (TXNIP) expression, indicating that GH has a direct effect on regulating a key gene involved in the homeostasis of cellular glucose. GH in combination with phenformin also substantially enhances the levels of p-AMPK, a marker of metabolic catastrophe. These findings suggest that the concurrent use of the glycolytic inhibitor GH with a complex-1 mitochondrial inhibitor could be used as a powerful tool for inducing metabolic catastrophe in cancer cells and reducing their growth.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Fenformina , Glucólisis , Glucosa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Línea Celular Tumoral
9.
Glob Pediatr Health ; 10: 2333794X231163418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992844

RESUMEN

Wilson disease is a rare autosomal recessive genetic disease, caused by the mutation of the ATP7B gene leading to decreased secretion of serum ceruloplasmin in blood and decrease biliary excretion of copper leading to toxic level accumulation in the liver, brain, kidney, and cornea, resulting in development of characteristic liver disease and neuropsychiatric symptoms. Our case presented with mainly clumsiness and gait abnormality without any psychiatric component and any history of liver disease. A 13-year old male, born out of non-consanguineous marriage, presented with clumsy walking and slurring of speech. The child also complained of poor handwriting and slipping of slipper from foot, without any history of abnormal behavior and poor scholastic performance. On examination gait was abnormal with sidewise swaying, increased muscle tone with rigidity and bilateral flexor plantar reflex. Slit lamp examination of eyes revealed bilateral Kayser-Fleischer rings. Serum ceruloplasmin was low (0.03 g/L) and 24-hour urinary copper was high (119.64 µg/day). MRI brain showed B/L putamen hyperintensity and panda sign suggestive of Wilson disease. After the diagnosis of Wilson disease was made, patient was treated with penicillamine and zinc. Child was also followed-up and re-examination showed slight improvement. Though not rare, Wilson disease is an uncommon entity with varied presentations and disabling consequences. Hence high index of suspicion and clinical correlation is required to diagnose it. Early initiation of treatment and good compliance ensure a better outcome.

10.
Nat Prod Res ; 37(23): 4008-4012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576067

RESUMEN

The root extract of Suregada zanzibariensis Baill. afforded six previously described ent-abietane diterpenoids, namely 7-oxo-ent-abieta-5(6),8(14),13(15)-trien-16,12-olide (1), mangiolide (2), 8,14ß:11,12α-diepoxy-13(15)-abietane-16,12-olide (3), 7ß,11ß,12ß-trihydroxy-ent-abieta-8(14),13(15)-diene-16,12-olide (4), 8α,14-dihydro-7-oxo-jolkinolide E (5), jolkinolide A (6), together with 3ß-sitosterol (7), scopoletin (8) and vanillin (9). Their structures were deduced through 1D and 2D NMR spectroscopic techniques, and HRESIMS, as well as by comparison of the NMR data with those reported in the literature. The crude extract and compounds 1-9 were evaluated for their antiplasmodial, antifungal and antibacterial activities. Mangiolide (2) showed strong in vitro antiplasmodial activity against chloroquine sensitive (D6) and resistant (W2) strains of Plasmodium falciparum with IC50 values of 0.79 and 0.87 µg/mL, respectively, while 3 (IC50 1.24 and 1.17 µg/mL) was less active than 2. Compound 2 also displayed antimicrobial activity against Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with IC50 values of 1.20, 3.90 and 7.20 µg/mL, respectively.


Asunto(s)
Antimaláricos , Staphylococcus aureus Resistente a Meticilina , Suregada , Abietanos , Antimaláricos/farmacología , Antibacterianos/farmacología
11.
Int J Pharm ; 631: 122533, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36566827

RESUMEN

Coupling hot-melt extrusion (HME) with fused deposition modeling three-dimensional printing (FDM-3DP) can facilitate the fabrication of tailored, patient-centered, and complex-shaped ocular dosage forms. We fabricated ciprofloxacin HCl ocular inserts by coupling high-throughput, solvent-free, and continuous HME with FDM-3DP. Insert fabrication utilized biocompatible, biodegradable, bioadhesive Klucel™ hydroxypropyl cellulose polymer, subjected to distinct FDM-3DP processing parameters, utilizing a design of experiment approach to achieve a tailored release profile. We determined the drug content, thermal properties, drug-excipient compatibility, surface morphology, in vitro release, antibacterial activity, ex-vivo transcorneal permeation, and stability of inserts. An inverse relationship was noted between insert thickness, infill density, and drug release rate. The optimized design demonstrated an amorphous solid dispersion with an extended-release profile over 24 h, no physical or chemical incompatibility, excellent mucoadhesive strength, smooth surface, lack of bacterial growth (Pseudomonas aeruginosa) in all release samples, and prolonged transcorneal drug flux compared with commercial eye drops and immediate-release inserts. The designed inserts were stable at room temperature considering drug content, thermal behavior, and release profile over three months. Overall, the fabricated insert could reduce administration frequency to once-daily dosing, affording a promising topical delivery platform with prolonged antibacterial activity and superior therapeutic outcomes for managing ocular bacterial infections.


Asunto(s)
Ciprofloxacina , Polímeros , Humanos , Comprimidos/química , Ciprofloxacina/farmacología , Liberación de Fármacos , Polímeros/química , Impresión Tridimensional , Antibacterianos/farmacología , Tecnología Farmacéutica/métodos
12.
Int J Pharm ; 630: 122423, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36427695

RESUMEN

This study developed, optimized, characterized, and evaluated bioadhesive, hot-melt extruded (HME), extended-release ocular inserts containing ciprofloxacin hydrochloride (CIP-HCL) to improve the therapeutic outcomes of ocular bacterial infections. The inserts were fabricated with FDA-approved biocompatible, biodegradable, and bioadhesive polymers that were tuned in different ratios to achieve a sustained release profile. The results revealed an inverse relationship between the Klucel™ hydroxypropyl cellulose (HPC, 140,000 Da) concentration and drug release and extended-release profile over 24 h. The CIP-HCL-HME inserts presented stable drug content, thermal behavior, surface pH, and release profiles over three months of room-temperature storage and demonstrated adequate mucoadhesive strength. SEM micrographs revealed a smooth surface. Bacterial growth was not observed on the samples during the in vitro release experiment (0.5-24 h), indicating that a minimum inhibitory concentration (MIC) of 90 against Pseudomonas aeruginosa was achieved. Ex vivo transcorneal permeation studies using excised rabbit corneas revealed that the prepared ocular inserts prolonged the transcorneal flux of the drug compared to commercial eye drops and immediate-release inserts and could reduce the administration frequency to once daily. Therefore, the inserts could increase patient compliance and exhibited prolonged antibacterial activity and thus could provide better therapeutic outcomes against ocular bacterial infections.


Asunto(s)
Infecciones Bacterianas , Ciprofloxacina , Animales , Conejos , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos/métodos , Ojo
13.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235141

RESUMEN

Three unique 5,6-seco-hexahydrodibenzopyrans (seco-HHDBP) machaeridiols A−C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E. faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, a series of novel machaeridiol-based analogs (1−17) were prepared by coupling stemofuran, pinosylvin, and resveratrol legends with monoterpene units R-(−)-α-phellandrene, (−)-p-mentha-2,8-diene-1-ol, and geraniol, and their inhibitory activities were profiled against MRSA ATCC 1708, VRE ATCC 700221, and cancer signaling pathways. Compounds 5 and 11 showed strong in vitro activities with MIC values of 2.5 µg/mL and 1.25 µg/mL against MRSA, respectively, and 2.50 µg/mL against VRE, while geranyl analog 14 was found to be moderately active (MIC 5 µg/mL). The reduction of the double bonds of the monoterpene unit of compound 5 resulted in 17, which had the same antibacterial potency (MIC 1.25 µg/mL and 2.50 µg/mL) as its parent, 5. Furthermore, a combination study between seco-HHDBP 17 and HHDBP machaeriol C displayed a synergistic effect with a fractional inhibitory concentrations (FIC) value of 0.5 against MRSA, showing a four-fold decrease in the MIC values of both 17 and machaeriol C, while no such effect was observed between vancomycin and 17. Compounds 11 and 17 were further tested in vivo against nosocomial MRSA at a single intranasal dose of 30 mg/kg in a murine model, and both compounds were not efficacious under these conditions. Finally, compounds 1−17 were profiled against a panel of luciferase genes that assessed the activity of complex cancer-related signaling pathways (i.e., transcription factors) using T98G glioblastoma multiforme cells. Among the compounds tested, the geranyl-substituted analog 14 exhibited strong inhibition against several signaling pathways, notably Smad, Myc, and Notch, with IC50 values of 2.17 µM, 1.86 µM, and 2.15 µM, respectively. In contrast, the anti-MRSA actives 5 and 17 were found to be inactive (IC50 > 20 µM) across the panel of these cancer-signaling pathways.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Staphylococcus aureus Resistente a Meticilina , Neoplasias , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Luciferasas , Ratones , Pruebas de Sensibilidad Microbiana , Monoterpenos/farmacología , Resveratrol/farmacología , Transducción de Señal , Factores de Transcripción , Vancomicina/farmacología
14.
Med J Armed Forces India ; 78(3): 327-332, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35855718

RESUMEN

Background: Lupus Nephritis (LN) is a major and frequent manifestation of Systemic Lupus Erythematosus (SLE), an autoimmune disease. Renal biopsy has a pivotal role in the diagnosis, prognosis, and management of the LN. The aim of this study was to count the mesenchymal interstitial cells utilizing CD34 immunohistochemistry (IHC) and morphometric analysis, correlate them with clinical parameters, class, activity, and chronicity indices and see if it can predict the course of the disease. Methods: A total of 32 renal biopsy blocks were analyzed by H&E stain, special stains, and CD34 IHC. Microvasculature density and interstitial stem cells were highlighted by CD34. These were then counted using a previously standardized computerized digital photomicrograph system (Dewinter Optical Inc) and manual count, respectively. Results: Out of the 32 cases, Lupus class 3 comprised of 11 (34.38%) cases, class 4 comprised of 16 (50%) cases, and mixed class 4 + 5 had 5 (15.62%) cases. It was found that CD34 expression in the microvasculature (for both microvascular density and mean vascular lumen diameter) decreased in patients of Lupus Nephritis with higher disease activity (p < 0.05). Although not statistically significant, the number of interstitial stem cells increased with lower disease activity. A statistical significance was found between serum total protein, serum albumin, and serum creatinine among the three groups of LN. Conclusion: Immunohistochemical staining of renal biopsy with CD34 may be used as a surrogate marker of disease activity in Lupus Nephritis patients.

15.
J Nat Prod ; 85(5): 1436-1441, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473311

RESUMEN

Two new lactone lipids, scoriosin (1) and its methyl ester (2), with a rare furylidene ring joined to a tetrahydrofurandione ring, were isolated from Scorias spongiosa, commonly referred to as sooty mold. The planar structure of these compounds was assigned by 1D and 2D NMR. The conformational analysis of these molecules was undertaken to evaluate the relative and absolute configuration through GIAO NMR chemical shift analysis and ECD calculation. In addition to the potent antimicrobial activities, compound 2 strongly potentiated the activity of amphotericin B against Cryptococcus neoformans, suggesting the potential utility of this compound in combination therapies for treating cryptococcal infections.


Asunto(s)
Antiinfecciosos , Cryptococcus neoformans , Antifúngicos/farmacología , Ascomicetos , Lactonas/farmacología , Lípidos , Estructura Molecular
16.
Med Chem ; 18(9): 949-969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35240963

RESUMEN

BACKGROUND: Quinoline is a well-established nucleus displaying various biological activities. Quinolin-8-ol-containing compounds are reported for antimicrobial as well as antimalarial activity. Hydrazone- and pyrazole-containing compounds are also reported for antimicrobial activity. In this work, we have synthesized hydrazonomethyl-quinolin-8-ol and pyrazol-3-yl-quinolin-8-ol derivatives retaining quinolin-8-ol along with hydrazone/pyrazole pharmacophores. OBJECTIVE: The objective of this work was to synthesise and evaluate in vitro hydrazonomethylquinolin- 8-ol and pyrazol-3-yl-quinolin-8-ol derivatives for antifungal, antibacterial and antimalarial activity. METHODS: Designed and synthesized hydrazonomethyl-quinolin-8-ol and pyrazol-3-yl-quinolin-8- ol derivatives were evaluated for antifungal (against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans), antibacterial (against methicillin resistant Staphylococcus aureus (MRSA), Escherichia Coli, Pseudomonas aeruginosa and Klebsillae pneumoniae) as well as antimalarial (against Plasmodium falciparum D6 and W2 strains) activity. RESULTS: Hydrazonomethyl-quinolin-8-ol (15.1-15.28) and pyrazol-3-yl-quinolin-8-ol derivatives (16.1-16.21 and 20.1-20.18) were synthesized in good to moderate yield. One-pot synthesis of pyrazol- 3-yl-quinolin-8-ol derivatives (16.1-16.21 and 20.1-20.18) was achieved. Compounds 15.3, 15.6, 15.7, 15.9-15.14, 15.16-15.19, 15.22 and 15.24 were found more potent compared to reference standard fluconazole (IC50 = 3.20 µM) against C. albicans with IC50 value less than 3 µM. Compounds 15.1, 15.2, 15.21 and 15.23 showed almost similar activity to reference standard fluconazole against C. albicans. Compounds 15.1-15.3, 15.9-15.12, 15.14-15.17, and 15.21-15.23 also showed good activity against fluconazole-resistant strain A. fumigatus with IC50 value less than 3 µM. Compounds 15.2-15.4, 15.7, 15.9, 15.17, 15.20 showed good antimalarial activity against P. falciparum D6 as well as P. falciparum W2 with IC50 values of 1.84, 1.83, 1.56, 1.49, 1.45, 1.97, 1.68 µM and 1.86, 1.40, 1.19, 1.71, 1.16, 1.34, 1.61 µM, respectively. 5-Pyrazol-3-yl-quinolin-8-ol derivatives, such as 16.3, 16.5, 16.11, 16.13, 16.19, 16.20, also showed antimalarial activity against P. falciparum D6 and W2 strains with IC50 values of 2.23, 2.16, 2.99, 2.99, 2.73, 2.12 µM and 2.91, 3.60, 4.61, 2.71, 2.31, 2.66 µM, respectively. CONCLUSION: Most of the 5-hydrazonomethyl-quinolin-8-ol derivatives showed good antifungal activity against C. albicans, A. fumigatus and C. neoformans. Most of the 5-hydrazonomethylquinolin- 8-ol derivatives were found more potent than reference standard fluconazole. These derivatives may be considered as leads for further development of antifungal agents.


Asunto(s)
Antiinfecciosos , Antimaláricos , Cryptococcus neoformans , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Candida albicans , Escherichia coli , Fluconazol , Hidrazonas , Pruebas de Sensibilidad Microbiana , Pirazoles/farmacología , Relación Estructura-Actividad
17.
Planta Med ; 88(8): 685-692, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34331304

RESUMEN

Two monobenzoylcyclopropane (hypoxhemerol A (1: ) and hypoxhemeroloside G (2: )) and three dibenzoylcyclopropane (hypoxhemerol B (3: ), hypoxhemeroloside H (4: ), and hypoxhemeroloside I (5: )) derivatives were isolated from the hydro-alcoholic extract of Hypoxis hemerocallidea corms. This is the first instance where benzoylcyclopropane analogs were isolated from any natural source. Structure elucidation was mainly based on 1D- and 2D-NMR and HRESIMS data. The absolute configuration (2R, 4R) of 1: was determined via NOESY NMR and experimental and calculated ECD data analyses. Compounds 1: -5: and 11 recently reported metabolites (hypoxoside, obtuside A, interjectin, acuminoside, curcapicycloside, and hypoxhemerolosides A - F) were screened for in vitro antimicrobial activity against various bacterial and fungal strains. Curcapicycloside and acuminoside exhibited antibacterial activity against Escherichia coli with 78 and 79% inhibition at 20 µg/mL, respectively. Hypoxhemeroloside A showed mild antifungal activity against Cryptococcus neoformans with 63% inhibition at 20 µg/mL.


Asunto(s)
Hypoxis , Antibacterianos/farmacología , Antifúngicos/farmacología , Hongos , Hypoxis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
18.
Nat Prod Res ; 36(12): 2984-2992, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34121536

RESUMEN

Bioactivity guided isolation of an ethanol extract of the root of Psoromanthus schottii (Family Fabaceae) afforded a new prenylated isoflavone, named schottiin (5,7,5'-trihydroxy-4'-O-methyl-6'-(3,3-dimethylallyl)-isoflavone) (1), together with four other isoflavones, including fremontone (2), 5,7,4',5'-tetrahydroxy-2'-(3,3-dimethylallyl)-isoflavone (3), glycyrrhisoflavone (4) and fremontin (5), of which 3 and 4 identified as isomeric mixture. Structures of 1-5 were determined by full spectroscopic analyses. A comprehensive 2 D NMR spectral data has allowed revising the structure of fremontone as 2 from previously reported 2 A. Compound 2 showed weak in-vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). A combination study using a checkerboard assay between fremontone (2) and methicillin exhibited a synergistic activity with 8-fold decrease in MIC of methicillin, as well as an additive effect with vancomycin against MRSA ATCC 1708. Compounds 1 and 2 also showed moderate antiplasmodial activity against chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum with no cytotoxicity to mammalian Vero cells.


Asunto(s)
Fabaceae , Isoflavonas , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/química , Chlorocebus aethiops , Sinergismo Farmacológico , Isoflavonas/farmacología , Mamíferos , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Células Vero
19.
Eur J Med Chem ; 225: 113747, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34391033

RESUMEN

Antimicrobial stewardship is imperative when treating bacterial infections because the misuse and overuse of antibiotics have caused pathogens to develop life-threatening resistance mechanisms. The New Delhi metallo-beta-lactamase (NDM-1) is one of many enzymes that enable bacterial resistance. NDM-1 is a more recently discovered beta-lactamase with the ability to inactivate a wide range of beta-lactam antibiotics. Multiple NDM-1 inhibitors have been designed and tested; however, due to the complexity of the NDM-1 active site, there is currently no inhibitor on the market. Consequently, an infection caused by bacteria possessing the gene for the NDM-1 enzyme is a serious and potentially fatal complication. An abundance of research has been invested over the past decade in search of an NDM-1 inhibitor. This review aims to summarize various NDM-1 inhibitor designs that have been developed in recent years.


Asunto(s)
Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Diseño de Fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Infecciones Bacterianas/metabolismo , Humanos , Estructura Molecular , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
20.
Chem Biodivers ; 18(9): e2100288, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34227213

RESUMEN

Seven phenolic compounds (ferulic acid, caffeic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-ß-D-glucopyranoside), a flavanonol (7-O-methylaromadendrin), two lignans (pinoresinol and matairesinol) and six diterpenic acids/alcohol (19-acetoxy-13-hydroxyabda-8(17),14-diene, totarol, 7-oxodehydroabietic acid, dehydroabietic acid, communic acid and isopimaric acid) were isolated from the hydroalcoholic extract of a Brazilian Brown Propolis and characterized by NMR spectral data analysis. The volatile fraction of brown propolis was characterized by CG-MS, composed mainly of monoterpenes and sesquiterpenes, being the major α-pinene (18.4 %) and ß-pinene (10.3 %). This propolis chemical profile indicates that Pinus spp., Eucalyptus spp. and Araucaria angustifolia might be its primary plants source. The brown propolis displayed significant activity against Plasmodium falciparum D6 and W2 strains with IC50 of 5.3 and 9.7 µg/mL, respectively. The volatile fraction was also active with IC50 of 22.5 and 41.8 µg/mL, respectively. Among the compounds, 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-ß-D-glucopyranoside showed IC50 of 3.1 and 1.0 µg/mL against D6 and W2 strains, respectively, while communic acid showed an IC50 of 4.0 µg/mL against W2 strain. Cytotoxicity was determined on four tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3) and two normal renal cell lines (LLC-PK1 and VERO). Matairesinol, 7-O-methylaromadendrin, and isopimaric acid showed an IC50 range of 1.8-0.78 µg/mL, 7.3-100 µg/mL, and 17-18 µg/mL, respectively, against the tumor cell lines but they were not cytotoxic against normal cell lines. The crude extract of brown propolis displayed antimicrobial activity against C. neoformans, methicillin-resistant Staphylococcus aureus, and P. aeruginosa at 29.9 µg/mL, 178.9 µg/mL, and 160.7 µg/mL, respectively. The volatile fraction inhibited the growth of C. neoformans at 53.0 µg/mL. The compounds 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 7-oxodehydroabietic acid were active against C. neoformans, and caffeic and communic acids were active against methicillin-resistant Staphylococcus aureus.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Antineoplásicos Fitogénicos/farmacología , Fitoquímicos/farmacología , Própolis/química , Animales , Antibacterianos/biosíntesis , Antibacterianos/química , Antimaláricos/química , Antimaláricos/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/química , Abejas , Brasil , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pruebas de Sensibilidad Parasitaria , Fitoquímicos/biosíntesis , Fitoquímicos/química , Plasmodium falciparum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA