Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Neurobiol ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114761

RESUMEN

The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.

2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362260

RESUMEN

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Asunto(s)
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animales , Ratas , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidad Neuronal , Pentilenotetrazol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente
3.
Cells ; 12(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36611852

RESUMEN

Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.


Asunto(s)
Hiperhomocisteinemia , Femenino , Embarazo , Ratas , Animales , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Plasticidad Neuronal , Potenciación a Largo Plazo , Hipocampo/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo
4.
Biochem Biophys Res Commun ; 529(4): 1145-1150, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819578

RESUMEN

Abnormal neuronal activity during epileptic seizures alters the properties of synaptic plasticity, and, consequently, leads to cognitive impairment. The molecular mechanism of these alterations in synaptic plasticity is still unclear. In the present study, using a 4-aminopyridine (4-AP) in vitro model, we demonstrated that epileptiform activity in rat hippocampal slices initially causes substantial enhancement of field excitatory postsynaptic potential amplitude. However, the potentiation of CA3-CA1 synapses was temporary and switched to long-term depression (LTD) within an hour. Previous studies showed that transient incorporation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial for the consolidation of long-term potentiation (LTP). We confirmed that, in normal conditions, the blockage of CP-AMPARs prevented the consolidation of LTP induced by theta-burst stimulation (TBS). In contrast, the blockage of CP-AMPARs preserved synaptic potentiation induced by epileptiform activity. One hour after a period of epileptiform activity in the hippocampal slices, synaptic plasticity was substantially altered, and the TBS protocol was unable to produce LTP. Moreover, if CP-AMPARs were blocked, the TBS protocol induced LTD. Our results indicate that CP-AMPARs play an essential role in the molecular mechanism of the disturbances of synaptic plasticity caused by epileptiform activity.


Asunto(s)
Calcio/metabolismo , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Plasticidad Neuronal , Receptores AMPA/metabolismo , Animales , Femenino , Potenciación a Largo Plazo/fisiología , Masculino , Ratas Wistar , Receptores AMPA/antagonistas & inhibidores , Ritmo Teta/fisiología
5.
Cell Mol Neurobiol ; 39(2): 287-300, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30607810

RESUMEN

The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Región CA3 Hipocampal/fisiopatología , Potenciación a Largo Plazo , N-Metilaspartato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Sinapsis/metabolismo , Animales , Potenciales Postsinápticos Excitadores , Aprendizaje por Laberinto , Pentilenotetrazol , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente , Memoria Espacial
6.
Neuroscience ; 399: 103-116, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30593922

RESUMEN

Pathophysiological remodeling processes following status epilepticus (SE) play a critical role in the pathophysiology of epilepsy but have not yet been not fully investigated. In the present study, we examined changes in intrinsic properties of pyramidal neurons, basal excitatory synaptic transmission, and short-term synaptic plasticity in hippocampal slices of rats after SE. Seizures were induced in 3-week-old rats by an intraperitoneal pentylenetetrazole (PTZ) injection. Only animals with generalized seizures lasting more than 30 min were included in the experiments. We found that CA1 pyramidal neurons became more excitable and started firing at a lower excitatory input due to a significant increase in input resistance. However, basal excitatory synaptic transmission was reduced in CA3-CA1 synapses, thus preventing the propagation of excitation through neural networks. A significant increase in paired-pulse facilitation 1 d after SE pointed to a decrease in the probability of glutamate release. Increased intrinsic excitability of neurons and decreased synaptic transmission differentially affected the excitability of a neural network. In terms of changes in seizure susceptibility after SE, we observed a significant increase in the maximal electroshock threshold 1 day after SE, suggesting a decrease in seizure susceptibility. However, after 1 week, there was no difference in seizure susceptibility between control and post-SE rats. The effects of SE on functional properties of hippocampal neurons were transient in the PTZ model, and most of them had recovered 1 week after SE. However, some minor alterations, such as smaller amplitude field potentials, were observed 1 month after SE.


Asunto(s)
Hipocampo/fisiopatología , Neuronas/fisiología , Estado Epiléptico/fisiopatología , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Electrochoque , Femenino , Masculino , Técnicas de Placa-Clamp , Pentilenotetrazol , Ratas Wistar , Factores de Tiempo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA