Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
mSphere ; 4(4)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366710

RESUMEN

The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking. Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to participate in cell wall biosynthesis and specifically in polysaccharide remodeling. Among these proteins, the DFG family plays an essential role in controlling polar growth in yeast. In the filamentous fungus and opportunistic human pathogen Aspergillus fumigatus, the DFG gene family contains seven orthologous DFG genes among which only six are expressed under in vitro growth conditions. Deletions of single DFG genes revealed that DFG3 plays the most important morphogenetic role in this gene family. A sextuple-deletion mutant resulting from the deletion of all in vitro expressed DFG genes did not contain galactomannan in the cell wall and has severe growth defects. This study has shown that DFG members are absolutely necessary for the insertion of galactomannan into the cell wall of A. fumigatus and that the proper cell wall localization of the galactomannan is essential for correct fungal morphogenesis in A. fumigatusIMPORTANCE The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. Enzymes involved in postsynthesis polysaccharide modifications, such as cleavage, elongation, branching, and cross-linking, are essential for fungal life. Here, we investigated in Aspergillus fumigatus the role of the members of the Dfg family, one of the 4 GPI-anchored protein families common to yeast and molds involved in cell wall remodeling. Molecular and biochemical approaches showed that DFG members are required for filamentous growth, conidiation, and cell wall organization and are essential for the life of this fungal pathogen.


Asunto(s)
Aspergillus fumigatus/genética , Pared Celular/química , Quitina/química , Glicosilfosfatidilinositoles/química , Mananos/química , beta-Glucanos/química , Aspergillus fumigatus/química , Proteínas Fúngicas/genética , Galactosa/análogos & derivados , Eliminación de Gen , Proteoglicanos , Virulencia
2.
Sci Data ; 6(1): 91, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201313

RESUMEN

Single-molecule long-read sequencing datasets were generated for a son-father-mother trio of Han Chinese descent that is part of the Genome in a Bottle (GIAB) consortium portfolio. The dataset was generated using the Pacific Biosciences Sequel System. The son and each parent were sequenced to an average coverage of 60 and 30, respectively, with N50 subread lengths between 16 and 18 kb. Raw reads and reads aligned to both the GRCh37 and GRCh38 are available at the NCBI GIAB ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/). The GRCh38 aligned read data are archived in NCBI SRA (SRX4739017, SRX4739121, and SRX4739122). This dataset is available for anyone to develop and evaluate long-read bioinformatics methods.


Asunto(s)
Pueblo Asiatico/genética , Bases de Datos Genéticas , Genoma Humano , Núcleo Familiar , China , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis de Secuencia de ADN
3.
Sci Data ; 3: 160025, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27271295

RESUMEN

The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.


Asunto(s)
Benchmarking , Genoma Humano , Exoma , Genómica , Humanos , Mutación INDEL
4.
Genetics ; 200(1): 47-58, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25745023

RESUMEN

Peptide tags fused to proteins are used in a variety of applications, including as affinity tags for purification, epitope tags for immunodetection, or fluorescent protein tags for visualization. However, the peptide tags can disrupt the target protein function. When function is disrupted by fusing a peptide to either the N or C terminus of the protein of interest, identifying alternative ways to create functional tagged fusion proteins can be difficult. Here, we describe a method to introduce protein tags internal to the coding sequence of a target protein. The method employs in vitro Tn7-transposon mutagenesis of plasmids for random introduction of the tag, followed by subsequent Gateway cloning steps to isolate alleles with mutations in the coding sequence of the target gene. The Tn7-epitope cassette is designed such that essentially all of the transposon is removed through restriction enzyme digestion, leaving only the protein tag at diverse sites internal to the ORF. We describe the use of this system to generate a panel of internally epitope-tagged versions of the Saccharomyces cerevisiae GPI-linked membrane protein Dcw1 and the Candida glabrata transcriptional regulator Sir3. This internal protein tagging system is, in principle, adaptable to tag proteins in any organism for which Gateway-adapted expression vectors exist.


Asunto(s)
Elementos Transponibles de ADN , Epítopos/genética , Ingeniería de Proteínas/métodos , Secuencia de Bases , Candida/genética , Manosidasas/genética , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA