Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 147(9): 3083-3098, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.


Asunto(s)
Estimulación Encefálica Profunda , Mesencéfalo , Vías Nerviosas , Área Tegmental Ventral , Humanos , Estimulación Encefálica Profunda/métodos , Vías Nerviosas/fisiología , Mesencéfalo/fisiología , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/diagnóstico por imagen , Masculino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imagen de Difusión Tensora , Corteza Prefrontal/fisiología , Femenino , Ganglios Basales/fisiología
2.
Comput Brain Behav ; 7(1): 1-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425991

RESUMEN

Decision-making behavior is often understood using the framework of evidence accumulation models (EAMs). Nowadays, EAMs are applied to various domains of decision-making with the underlying assumption that the latent cognitive constructs proposed by EAMs are consistent across these domains. In this study, we investigate both the extent to which the parameters of EAMs are related between four different decision-making domains and across different time points. To that end, we make use of the novel joint modelling approach, that explicitly includes relationships between parameters, such as covariances or underlying factors, in one combined joint model. Consequently, this joint model also accounts for measurement error and uncertainty within the estimation of these relations. We found that EAM parameters were consistent between time points on three of the four decision-making tasks. For our between-task analysis, we constructed a joint model with a factor analysis on the parameters of the different tasks. Our two-factor joint model indicated that information processing ability was related between the different decision-making domains. However, other cognitive constructs such as the degree of response caution and urgency were only comparable on some domains.

3.
Data Brief ; 42: 108086, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35372652

RESUMEN

In order to further our understanding of brain function and the underlying networks, more advanced diffusion weighted magnetic resonance imaging (DWI MRI) data are essential. Here we present freely available high-resolution multi-shell multi-directional 3 Tesla (T) DWI MRI data as part of the 'Amsterdam Ultra-high field adult lifespan database' (AHEAD). The 3T DWI AHEAD dataset include 1.28mm isotropic whole brain DWI data of 49 healthy adult participants between 18 and 90 years old. The acquired data include DWIs at three non-zero b-values (48 directions, b-value 700 s/mm2; 56 directions, b-value 1000 s/mm2; 64 directions, b-value 1600 s/mm2) including a total of twelve volumes with a b-value of 0 s/mm2 (b0 volumes). In addition, eight b0 volumes with a reversed phase encoding direction were acquired to correct for distortions. To facilitate future use, the DWI data have been denoised, corrected for eddy currents, susceptibility-induced off-resonance field distortions, bias fields, and are skull stripped.

4.
Brain Struct Funct ; 227(1): 219-297, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34714408

RESUMEN

The growing interest in the human subcortex is accompanied by an increasing number of parcellation procedures to identify deep brain structures in magnetic resonance imaging (MRI) contrasts. Manual procedures continue to form the gold standard for parcellating brain structures and is used for the validation of automated approaches. Performing manual parcellations is a tedious process which requires a systematic and reproducible approach. For this purpose, we created a series of protocols for the anatomical delineation of 21 individual subcortical structures. The intelligibility of the protocols was assessed by calculating Dice similarity coefficients for ten healthy volunteers. In addition, dilated Dice coefficients showed that manual parcellations created using these protocols can provide high-quality training data for automated algorithms. Here, we share the protocols, together with three example MRI datasets and the created manual delineations. The protocols can be applied to create high-quality training data for automated parcellation procedures, as well as for further validation of existing procedures and are shared without restrictions with the research community.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos
5.
Brain Sci ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071635

RESUMEN

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM's limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.

6.
Brain Struct Funct ; 226(4): 1155-1167, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33580320

RESUMEN

Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.


Asunto(s)
Imagen por Resonancia Magnética , Área Tegmental Ventral , Mapeo Encefálico , Humanos , Recompensa
7.
Elife ; 102021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33501916

RESUMEN

Learning and decision-making are interactive processes, yet cognitive modeling of error-driven learning and decision-making have largely evolved separately. Recently, evidence accumulation models (EAMs) of decision-making and reinforcement learning (RL) models of error-driven learning have been combined into joint RL-EAMs that can in principle address these interactions. However, we show that the most commonly used combination, based on the diffusion decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response times observed during reinforcement learning. We propose a new RL-EAM based on an advantage racing diffusion (ARD) framework for choices among two or more options that not only addresses this problem but captures stimulus difficulty, speed-accuracy trade-off, and stimulus-response-mapping reversal effects. The RL-ARD avoids fundamental limitations imposed by the DDM on addressing effects of absolute values of choices, as well as extensions beyond binary choice, and provides a computationally tractable basis for wider applications.


Asunto(s)
Condicionamiento Operante , Toma de Decisiones , Refuerzo en Psicología , Adulto , Femenino , Humanos , Masculino , Tiempo de Reacción , Adulto Joven
8.
PLoS One ; 14(8): e0214343, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31425517

RESUMEN

Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease. Contrary to that, Fractional Anisotropy values were shown to decrease in Parkinson's disease patients for connections between the subthalamic nucleus and the pars opercularis of the inferior frontal gyrus, anterior cingulate cortex, the dorsolateral prefrontal cortex and the pre-supplementary motor, collectively involved in preparatory motor control, decision making and task monitoring. While the biological underpinnings of fractional anisotropy alterations remain elusive, they may nonetheless be used as an index of Parkinson's disease. Moreover, we find that failing to account for structural changes occurring in the subthalamic nucleus with age and disease reduce the accuracy and influence the results of tractography, highlighting the importance of using appropriate atlases for tractography.


Asunto(s)
Enfermedad de Parkinson/patología , Sustancia Blanca/patología , Anciano , Atlas como Asunto , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Teorema de Bayes , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Anatómicos , Modelos Estadísticos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Enfermedad de Parkinson/diagnóstico por imagen , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/patología , Sustancia Blanca/diagnóstico por imagen
9.
Neuroimage ; 191: 258-268, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710678

RESUMEN

The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are assumed to play a key role in dopamine-related functions such as reward-related behaviour, motivation, addiction and motor functioning. Although dopamine-producing midbrain structures are bordering, they show significant differences in structure and function that argue for a distinction when studying the functions of the dopaminergic midbrain, especially by means of neuroimaging. First, unlike the SNc, the VTA is not a nucleus, which makes it difficult to delineate the structure due to lack of clear anatomical borders. Second, there is no consensus in the literature about the anatomical nomenclature to describe the VTA. Third, these factors in combination with limitations in magnetic resonance imaging (MRI) complicate VTA visualization. We suggest that developing an MRI-compatible probabilistic atlas of the VTA will help to overcome these issues. Such an atlas can be used to identify the individual VTA and serve as region-of-interest for functional MRI.


Asunto(s)
Área Tegmental Ventral/anatomía & histología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA