Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004692

RESUMEN

Water companies make efforts to reduce the risk of microbial contamination in drinking water. A widely used strategy is to introduce chlorine into the drinking water distribution system (DWDS). A subtle potential risk is that non-lethal chlorine residuals may select for chlorine resistant species in the biofilms that reside in DWDS. Here, we quantify the thickness, density, and coverage of naturally occurring multi-species biofilms grown on slides in tap water with and without chlorine, using fluorescence microscopy. We then place the slides in an annular rotating reactor and expose them to fluid-wall shears, which are redolent of those on pipe walls in DWDS. We found that biofilms in chlorine experiment were thicker, denser and with higher coverage than in non-chlorine conditions under all flow regimes and during incubation. This suggests that the formation and development of biofilms was promoted by chlorine. Surprisingly, for both chlorinated and non-chlorinated conditions, biofilm thickness, density and coverage were all positively correlated with shear stress. More differences were detected in biofilms under the different flow regimes in non-chlorine than in chlorine experiments. This suggests a more robust biofilm under chlorine conditions. While this might imply less mobilization of biofilms in high shear events in pipe networks, it might also provide refuge from chlorine residuals for pathogens.

2.
NPJ Biofilms Microbiomes ; 8(1): 33, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487949

RESUMEN

There is growing evidence that individual bacteria sense and respond to changes in mechanical loading. However, the subtle responses of multispecies biofilms to dynamic fluid shear stress are not well documented because experiments often fail to disentangle any beneficial effects of shear stress from those delivered by convective transport of vital nutrients. We observed the development of biofilms with lognormally distributed microcolony sizes in drinking water on the walls of flow channels underflow regimes of increasing complexity. First, where regular vortices induced oscillating wall shear and simultaneously enhanced mass transport, which produced the thickest most extensive biofilms. Second, where unsteady uniform flow imposed an oscillating wall shear, with no enhanced transport, and where the biomass and coverage were only 20% smaller. Finally, for uniform steady flows with constant wall shear where the extent, thickness, and density of the biofilms were on average 60% smaller. Thus, the dynamics of shear stress played a significant role in promoting biofilm development, over and above its magnitude or mass transfer effects, and therefore, mechanosensing may prevail in complex multispecies biofilms which could open up new ways of controlling biofilm structure.


Asunto(s)
Biopelículas , Agua Potable , Bacterias , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA