Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Microbiol Spectr ; : e0190624, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377610

RESUMEN

For over a century, the filamentous Ascomycete fungus Aspergillus niger has played a pivotal role in the industrial production of citric acid. A critical fermentation parameter that sustains high-yield citric acid accumulation is the suboptimal concentration of manganese(II) ions in the culture broth at the early stages of the process. However, the requirement for this deficiency has not been investigated on a functional genomics level. In this study, we compared the transcriptome of the citric acid hyper-producer A. niger NRRL2270 strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. Of the 11,846 genes in the genome, 963 genes (8.1% of the total) were identified as significantly differentially expressed under these conditions. Disproportionately high number of differentially regulated genes encode predicted extracellular and membrane proteins. The most abundant gene group that was upregulated in Mn2+ ion deficiency condition encodes enzymes acting on polysaccharides. In contrast, six clusters of genes encoding secondary metabolites showed downregulation under manganese deficiency. Mn2+ deficiency also triggers upregulation of the cexA gene, which encodes the citrate exporter. We provide functional evidence that the upregulation of cexA is caused by the intracellular accumulation of citrate or acetyl-CoA and is a major factor in triggering citrate overflow. IMPORTANCE: Citric acid is produced on industrial scale by batch fermentation of the filamentous fungus Aspergillus niger. High-yield citric acid production requires a low (<5 ppb) manganese(II) ion concentration in the culture broth. However, the requirement for this deficiency has not been investigated on a functional genomics level. Here, we compared the transcriptome of a citric acid hyper-producer A. niger strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. We observed that Mn2+ deficiency triggers an upregulation of the citrate exporter gene cexA and provides functional evidence that this event is responsible for citrate overflow. In addition to the industrial relevance, this is the first study that examined the role of Mn2+ ion deficiency in a heterotrophic eukaryotic cell on a genome-wide scale.

3.
Bioprocess Biosyst Eng ; 47(12): 2055-2073, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39249151

RESUMEN

Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), ß-glucosidase (ß-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.


Asunto(s)
Lignina , Oryza , Penicillium , Penicillium/enzimología , Penicillium/metabolismo , Penicillium/genética , Oryza/microbiología , Lignina/metabolismo , Hidrólisis , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fermentación
4.
Commun Biol ; 7(1): 1124, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266695

RESUMEN

Thermophily is a trait scattered across the fungal tree of life, with its highest prevalence within three fungal families (Chaetomiaceae, Thermoascaceae, and Trichocomaceae), as well as some members of the phylum Mucoromycota. We examined 37 thermophilic and thermotolerant species and 42 mesophilic species for this study and identified thermophily as the ancestral state of all three prominent families of thermophilic fungi. Thermophilic fungal genomes were found to encode various thermostable enzymes, including carbohydrate-active enzymes such as endoxylanases, which are useful for many industrial applications. At the same time, the overall gene counts, especially in gene families responsible for microbial defense such as secondary metabolism, are reduced in thermophiles compared to mesophiles. We also found a reduction in the core genome size of thermophiles in both the Chaetomiaceae family and the Eurotiomycetes class. The Gene Ontology terms lost in thermophilic fungi include primary metabolism, transporters, UV response, and O-methyltransferases. Comparative genomics analysis also revealed higher GC content in the third base of codons (GC3) and a lower effective number of codons in fungal thermophiles than in both thermotolerant and mesophilic fungi. Furthermore, using the Support Vector Machine classifier, we identified several Pfam domains capable of discriminating between genomes of thermophiles and mesophiles with 94% accuracy. Using AlphaFold2 to predict protein structures of endoxylanases (GH10), we built a similarity network based on the structures. We found that the number of disulfide bonds appears important for protein structure, and the network clusters based on protein structures correlate with the optimal activity temperature. Thus, comparative genomics offers new insights into the biology, adaptation, and evolutionary history of thermophilic fungi while providing a parts list for bioengineering applications.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Genómica/métodos , Filogenia , Hongos/genética , Hongos/clasificación , Adaptación Fisiológica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 444, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167166

RESUMEN

The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports. The LPMO1 (30 kDa) and LPMO2 (47 kDa), cloned and expressed in Pichia pastoris, were catalytically active with (kcat/Km) of 6.6×10-2 mg-1 ml min-1 and 1.8×10-2 mg-1 ml min-1 against Avicel, respectively. The mass spectrometry of hydrolysis products of Avicel/carboxy methyl cellulose (CMC) showed presence of C1/C4 oxidized oligosaccharides indicating them to be Type 3 LPMOs. The 3D structural analysis of LPMO1 and LPMO2 revealed distinct arrangements of conserved catalytic residues at their active site. The developed enzyme cocktails consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant LPMO1/LPMO2 resulted in significantly enhanced saccharification of steam/acid pretreated unwashed rice straw slurry from PRAJ industries (Pune, India). The current work indicates that LPMO1 and LPMO2 are catalytically efficient and have a high degree of thermostability, emphasizing their usefulness in improving benchmark enzyme cocktail performance. KEY POINTS: • Mass spectrometry depicts subtle interactions between LPMOs and auxiliary enzymes. • Cello-oligosaccharides strongly downregulated the LPMO1 expression. • Developed LPMO cocktails showed superior hydrolysis in comparison to CellicCTec3.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Polisacáridos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Hidrólisis , Celulosa/metabolismo , Regulación Fúngica de la Expresión Génica , Oligosacáridos/metabolismo , Clonación Molecular
6.
Front Ophthalmol (Lausanne) ; 4: 1372429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984119

RESUMEN

Introduction: Zoledronate is a commonly prescribed medication to maintain bone health; however, a rare side effect includes ocular inflammation. We report a case of simultaneous anterior uveitis and orbital inflammation associated with zoledronate infusion in a patient with metastatic breast cancer. We also performed a literature search to provide an up-to-date summary of cases with zoledronate-associated ocular inflammation. Methods: This is a case report with literature review. Literature search (timeline 2010 to 2023) was performed using PubMed with the search team: (zoledronate) AND (uveitis OR scleritis OR orbital inflammation OR ocular inflammation). Results: A 48-year-old female presented with left eye pain, swelling, and decreased vision 2 days after receiving zoledronic acid infusion. An ophthalmic exam showed non-granulomatous anterior uveitis. CT orbits and ocular ultrasound showed signs of posterior scleritis and orbital inflammation. Ocular inflammation caused by an infection or metastatic cancer was ruled out. The patient was treated with both topical and systemic corticosteroids. Complete resolution of the inflammation occurred after 2.5 weeks. Conclusion: Orbital inflammation and uveitis are an uncommon side effect of zoledronate but needs to be promptly recognized and treated to prevent sight-threatening complications.

7.
Appl Environ Microbiol ; 90(7): e0101424, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38953370

RESUMEN

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.


Asunto(s)
Cobre , Oxidorreductasas , Filogenia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Cobre/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimología , Especificidad por Sustrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Galactosa Oxidasa/genética , Galactosa Oxidasa/metabolismo , Galactosa Oxidasa/química , Alineación de Secuencia , Secuencia de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Dominio Catalítico
8.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676717

RESUMEN

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Asunto(s)
Biomasa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimología , Sordariales/metabolismo , Hidrólisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Celulosa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Celulasa/metabolismo , Celulasa/genética
9.
Biotechnol Biofuels Bioprod ; 17(1): 47, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539167

RESUMEN

BACKGROUND: Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS: In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS: The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.

10.
Bioprocess Biosyst Eng ; 47(4): 567-582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470501

RESUMEN

The present study reports a highly thermostable ß-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular ß-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified ß-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of ß-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of ß-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal ß-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant ß-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted ß-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.


Asunto(s)
Eurotiales , beta-Glucosidasa , Hidrólisis , beta-Glucosidasa/química , Biomasa
11.
Bioresour Technol ; 393: 130084, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000639

RESUMEN

Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins. A total of 12 lignin-active fungal multicopper oxidases were discovered, including 9 enzymes active under alkaline conditions (pH 11.0). Principal component analysis revealed the poor ability of model compounds to predict enzyme performance on industrial lignins. Additionally, sequence similarity analyses grouped these enzymes with Auxiliary Activity-1 sub-families with few previously characterized members, underscoring their taxonomic novelty. Correlation between the lignin-activity of these enzymes and their taxonomic origin, however, was not observed. These are critical insights to bridge the gap between enzyme discovery and application for industrial lignin valorization.


Asunto(s)
Lacasa , Lignina , Humanos , Lacasa/metabolismo , Lignina/química , Oxidación-Reducción
12.
Appl Environ Microbiol ; 89(12): e0132023, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054735

RESUMEN

IMPORTANCE: Ruminants play a key role in the conversion of cellulolytic plant material into high-quality meat and milk protein for humans. The rumen microbiome is the driver of this conversion, yet there is little information on how gene expression within the microbiome impacts the efficiency of this conversion process. The current study investigates gene expression in the rumen microbiome of beef heifers and bison and how transplantation of ruminal contents from bison to heifers alters gene expression. Understanding interactions between the host and the rumen microbiome is the key to developing informed approaches to rumen programming that will enhance production efficiency in ruminants.


Asunto(s)
Bison , Microbiota , Humanos , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Rumen/metabolismo , Rumiantes , Dieta/veterinaria , Fermentación
13.
Biotechnol Biofuels Bioprod ; 16(1): 132, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679837

RESUMEN

BACKGROUND: Microbial lytic polysaccharide monooxygenases (LPMOs) cleave diverse biomass polysaccharides, including cellulose and hemicelluloses, by initial oxidation at C1 or C4 of glycan chains. Within the Carbohydrate-Active Enzymes (CAZy) classification, Auxiliary Activity Family 9 (AA9) comprises the first and largest group of fungal LPMOs, which are often also found in tandem with non-catalytic carbohydrate-binding modules (CBMs). LPMOs originally attracted attention for their ability to potentiate complete biomass deconstruction to monosaccharides. More recently, LPMOs have been applied for selective surface modification of insoluble cellulose and chitin. RESULTS: To further explore the catalytic diversity of AA9 LPMOs, over 17,000 sequences were extracted from public databases, filtered, and used to construct a sequence similarity network (SSN) comprising 33 phylogenetically supported clusters. From these, 32 targets were produced successfully in the industrial filamentous fungus Aspergillus niger, 25 of which produced detectable LPMO activity. Detailed biochemical characterization of the eight most highly produced targets revealed individual C1, C4, and mixed C1/C4 regiospecificities of cellulose surface oxidation, different redox co-substrate preferences, and CBM targeting effects. Specifically, the presence of a CBM correlated with increased formation of soluble oxidized products and a more localized pattern of surface oxidation, as indicated by carbonyl-specific fluorescent labeling. On the other hand, LPMOs without native CBMs were associated with minimal release of soluble products and comparatively dispersed oxidation pattern. CONCLUSIONS: This work provides insight into the structural and functional diversity of LPMOs, and highlights the need for further detailed characterization of individual enzymes to identify those best suited for cellulose saccharification versus surface functionalization toward biomaterials applications.

14.
Fungal Biol Biotechnol ; 10(1): 18, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658430

RESUMEN

BACKGROUND: The filamentous fungus Rasamsonia emersonii has immense potential to produce biorefinery relevant thermostable cellulase and hemicellulase enzymes using lignocellulosic biomass. Previously in our lab, a hyper-cellulase producing strain of R. emersonii was developed through classical breeding and system biology approaches. ACE1, a pivotal transcription factor in fungi, plays a crucial role in negatively regulating the expression of cellulase genes. In order to identify the role of ACE1 in cellulase production and to further improve the lignocellulolytic enzyme production in R. emersonii, CRISPR/Cas9 mediated disruption of ACE1 gene was employed. RESULTS: A gene-edited ∆ACE1 strain (GN11) was created, that showed 21.97, 20.70 and 24.63, 9.42, 18.12%, improved endoglucanase, cellobiohydrolase (CBHI), ß-glucosidase, FPase, and xylanase, activities, respectively, as compared to parental strain M36. The transcriptional profiling showed that the expression of global regulator (XlnR) and different CAZymes genes including endoglucanases, cellobiohydrolase, ß-xylosidase, xylanase, ß-glucosidase and lytic polysaccharide mono-oxygenases (LPMOs) were significantly enhanced, suggesting critical roles of ACE1 in negatively regulating the expression of various key genes associated with cellulase production in R. emersonii. Whereas, the disruption of ACE1 significantly down-regulated the expression of CreA repressor gene as also evidenced by 2-deoxyglucose (2-DG) resistance phenotype exhibited by edited strain GN11 as well as appreciably higher constitutive production of cellulases in the presence of glucose and mixture of glucose and disaccharide (MGDs) both in batch and flask fed batch mode of culturing. Furthermore, ∆ACE1 strains were evaluated for the hydrolysis of biorefinery relevant steam/acid pretreated unwashed rice straw slurry (Praj Industries Ltd; 15% substrate loading rate) and were found to be significantly superior when compared to the benchmark enzymes produced by parent strain M36 and Cellic Ctec3. CONCLUSIONS: Current work uncovers the crucial role of ACE1 in regulating the expression of the various cellulase genes and carbon catabolite repression mechanism in R. emersonii. This study represents the first successful report of utilizing CRISPR/Cas9 genome editing technology to disrupt the ACE1 gene in the thermophlic fungus R. emersonii. The improved methodologies presented in this work might be applied to other commercially important fungal strains for which genetic manipulation tools are limited.

15.
J Biol Chem ; 299(8): 105003, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37399977

RESUMEN

Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on ß-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These ß-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the ß-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes ß-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes ß-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to ß-ketoadipate.


Asunto(s)
Aspergillus niger , Hidroxibenzoatos , Adipatos , Aspergillus niger/genética , Bacterias/metabolismo
16.
Methods Mol Biol ; 2657: 285-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37149538

RESUMEN

Lignocellulosic biomass represents an abundant, renewable resource that can be used to produce biofuels, low-cost livestock feed, and high-value chemicals. The potential of this bioresource has led to intensive research efforts to develop cost-effective methods to break down lignocellulose. The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well recognized and in recent years has received renewed interest. Transcriptomics has been used to identify enzymes that are expressed by these fungi and are involved in the degradation of a range of lignocellulose feedstocks. The transcriptome is the entire complement of coding and non-coding RNA transcripts that are expressed by a cell under a particular set of conditions. Monitoring changes in gene expression can provide fundamental information about the biology of an organism. Here we outline a general methodology that will enable researchers to conduct comparative transcriptomic studies with the goal of identifying enzymes involved in the degradation of the plant cell wall. The method described will include growth of fungal cultures, isolation and sequencing of RNA, and a basic description of data analysis for bioinformatic identification of differentially expressed transcripts.


Asunto(s)
Lignina , Transcriptoma , Lignina/metabolismo , Perfilación de la Expresión Génica , Hongos/genética , Biomasa
17.
Methods Mol Biol ; 2657: 305-313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37149539

RESUMEN

Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in nutrient acquisition. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and understand how the proteins produced by an organism change in response to different conditions. Many fungi are efficient decomposers of plant cell walls, and anaerobic fungi are well recognized for their ability to digest lignocellulose. Here we outline a protocol for the enrichment and isolation of proteins secreted by anaerobic fungi after growth on simple (glucose) and complex (straw and alfalfa hay) carbon sources. We provide detailed instruction on generating protein fragments and preparing these for proteomic analysis using reversed-phase chromatography and mass spectrometry. The interpretation of results and their relevance to a particular biological system is study-dependent and beyond the scope of this protocol.


Asunto(s)
Hongos , Proteómica , Proteómica/métodos , Hongos/metabolismo , Lignina/metabolismo , Espectrometría de Masas
18.
Cornea ; 42(11): 1432-1438, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36747319

RESUMEN

PURPOSE: Small-fiber neuropathy (SFN) is known to be associated with Sjögren disease (SjD), and in vivo corneal confocal microscopy can identify features compatible with SFN. Here, we performed a descriptive study to identify features of SFN of the corneal subbasal nerve plexus using in vivo confocal microscopy. METHODS: We recruited 10 participants from the Sjögren's International Collaborative Clinical Alliance (SICCA), 1 new participant (in an effort to expand the SICCA cohort), and 22 healthy controls. All participants underwent slit-lamp examination and in vivo confocal microscopy of the central corneal subbasal nerve plexus centered about the central whorl to create a 30-image montage. Each image was analyzed with automated software (ACCmetrics, Manchester, United Kingdom) to produce 7 nerve metrics. We performed t-tests and age-adjusted regressions to make comparisons of nerve metrics between participants with SjD and healthy controls. RESULTS: Most nerve metrics were significantly lower in participants with SjD compared with healthy controls. The mean corneal nerve fiber density was found to be 3.5 mm/mm 2 in participants with SjD compared with 10.6 mm/mm 2 in healthy controls (95% confidence interval, -8.4 to -0.93; P = 0.02). Within the 11 participants with SjD, 22 eyes were analyzed on confocal microscopy, and 16 of those eyes (from 9 individuals) did not have an identifiable central whorl. Within the 22 healthy controls, 22 eyes (right eye alone) were analyzed on confocal microscopy, and 21 of those eyes had an identifiable central whorl. CONCLUSIONS: SjD exhibits lower corneal nerve metrics compared with healthy controls. These findings suggest that features compatible with SFN can distinguish SjD from healthy controls and may serve as a potential novel biomarker in identifying SjD.


Asunto(s)
Enfermedades de la Córnea , Humanos , Proyectos Piloto , Enfermedades de la Córnea/diagnóstico , Enfermedades de la Córnea/etiología , Córnea/inervación , Fibras Nerviosas , Nervio Oftálmico , Microscopía Confocal/métodos
19.
New Phytol ; 238(1): 297-312, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600379

RESUMEN

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.


Asunto(s)
Arabidopsis , Populus , Madera/química , Lignina/metabolismo , Xilanos/metabolismo , Ácido Glucurónico/análisis , Ácido Glucurónico/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Populus/metabolismo
20.
J Fungi (Basel) ; 8(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36547648

RESUMEN

Fungi play a critical role in the global carbon cycle by degrading plant polysaccharides to small sugars and metabolizing them as carbon and energy sources. We mapped the well-established sugar metabolic network of Aspergillus niger to five taxonomically distant species (Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium and Dichomitus squalens) using an orthology-based approach. The diversity of sugar metabolism correlates well with the taxonomic distance of the fungi. The pathways are highly conserved between the three studied Eurotiomycetes (A. niger, A. nidulans, P. subrubescens). A higher level of diversity was observed between the T. reesei and A. niger, and even more so for the two Basidiomycetes. These results were confirmed by integrative analysis of transcriptome, proteome and metabolome, as well as growth profiles of the fungi growing on the corresponding sugars. In conclusion, the establishment of sugar pathway models in different fungi revealed the diversity of fungal sugar conversion and provided a valuable resource for the community, which would facilitate rational metabolic engineering of these fungi as microbial cell factories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA