Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Gen Physiol ; 156(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226948

RESUMEN

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Asunto(s)
Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Proteínas Quinasas , Tubulina (Proteína) , Animales , Humanos , Ratas , Membrana Celular , Análisis por Conglomerados , Células HEK293 , Proteínas Quinasas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
3.
J Physiol ; 599(13): 3337-3361, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963564

RESUMEN

KEY POINTS: In adult ventricular myocytes, the slow delayed rectifier (IKs ) channels are distributed on the surface sarcolemma, not t-tubules. In adult ventricular myocytes, KCNQ1 and KCNE1 have distinct cell surface and cytoplasmic pools. KCNQ1 and KCNE1 traffic from the endoplasmic reticulum to the plasma membrane by separate routes, and assemble into IKs channels on the cell surface. Liquid chromatography/tandem mass spectrometry applied to affinity-purified KCNQ1 and KCNE1 interacting proteins reveals novel interactors involved in protein trafficking and assembly. Microtubule plus-end binding protein 1 (EB1) binds KCNQ1 preferentially in its dimer form, and promotes KCNQ1 to reach the cell surface. An LQT1-associated mutation, Y111C, reduces KCNQ1 binding to EB1 dimer. ABSTRACT: Slow delayed rectifier (IKs ) channels consist of KCNQ1 and KCNE1. IKs functions as a 'repolarization reserve' in the heart by providing extra current for ventricular action potential shortening during ß-adrenergic stimulation. There has been much debate about how KCNQ1 and KCNE1 traffic in cells, where they associate to form IKs channels, and the distribution pattern of IKs channels relative to ß-adrenergic signalling complex. We used experimental strategies not previously applied to KCNQ1, KCNE1 or IKs , to provide new insights into these issues. 'Retention-using-selected-hook' experiments showed that newly translated KCNE1 constitutively trafficked through the conventional secretory path to the cell surface. KCNQ1 largely stayed in the endoplasmic reticulum, although dynamic KCNQ1 vesicles were observed in the submembrane region. Disulphide-bonded KCNQ1/KCNE1 constructs reported preferential association after they had reached cell surface. An in situ proximity ligation assay detected IKs channels in surface sarcolemma but not t-tubules of ventricular myocytes, similar to the reported location of adenylate cyclase 9/yotiao. Fluorescent protein-tagged KCNQ1 and KCNE1, in conjunction with antibodies targeting their extracellular epitopes, detected distinct cell surface and cytoplasmic pools of both proteins in myocytes. We conclude that, in cardiomyocytes, KCNQ1 and KCNE1 traffic by different routes to surface sarcolemma where they assemble into IKs channels. This mode of delayed channel assembly helps IKs fulfil its function of repolarization reserve. Proteomic experiments revealed a novel KCNQ1 interactor, microtubule plus-end binding protein 1 (EB1). EB1 dimer (active form) bound KCNQ1 and increased its surface level. An LQT1 mutation, Y111C, reduced KCNQ1 binding to EB1 dimer.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Membrana Celular , Canal de Potasio KCNQ1/genética , Miocitos Cardíacos , Proteómica
4.
J Mol Cell Cardiol ; 155: 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33636221

RESUMEN

High-throughput experiments suggest that almost 20% of human proteins may be S-palmitoylatable, a post-translational modification (PTM) whereby fatty acyl chains, most commonly palmitoyl chain, are linked to cysteine thiol groups that impact on protein trafficking, distribution and function. In human, protein S-palmitoylation is mediated by a group of 23 palmitoylating 'Asp-His-His-Cys' domain-containing (DHHC) enzymes. There is no information on the scope of protein S-palmitoylation, or the pattern of DHHC enzyme expression, in the heart. We used resin-assisted capture to pull down S-palmitoylated proteins from human, dog, and rat hearts, followed by proteomic search to identify proteins in the pulldowns. We identified 454 proteins present in at least 2 species-specific pulldowns. These proteins are operationally called 'cardiac palmitoylome'. Enrichment analysis based on Gene Ontology terms 'cellular component' indicated that cardiac palmitoylome is involved in cell-cell and cell-substrate junctions, plasma membrane microdomain organization, vesicular trafficking, and mitochondrial enzyme organization. Importantly, cardiac palmitoylome is uniquely enriched in proteins participating in the organization and function of t-tubules, costameres and intercalated discs, three microdomains critical for excitation-contraction coupling and intercellular communication of cardiomyocytes. We validated antibodies targeting DHHC enzymes, and detected eleven of them expressed in hearts across species. In conclusion, we provide resources useful for investigators interested in studying protein S-palmitoylation and its regulation by DHHC enzymes in the heart. We also discuss challenges in these efforts, and suggest methods and tools that should be developed to overcome these challenges.


Asunto(s)
Aciltransferasas/metabolismo , Miocardio/metabolismo , Proteoma , Proteómica , Aciltransferasas/genética , Animales , Células COS , Chlorocebus aethiops , Cromatografía Liquida , Biología Computacional/métodos , Regulación Enzimológica de la Expresión Génica , Humanos , Isoenzimas , Lipoilación , Miocardio/enzimología , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem
6.
J Biol Chem ; 294(36): 13487-13501, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337710

RESUMEN

Junctophilins (JPH1-JPH4) are expressed in excitable and nonexcitable cells, where they tether endoplasmic/sarcoplasmic reticulum (ER/SR) and plasma membranes (PM). These ER/SR-PM junctions bring Ca-release channels in the ER/SR and Ca as well as Ca-activated K channels in the PM to within 10-25 nm. Such proximity is critical for excitation-contraction coupling in muscles, Ca modulation of excitability in neurons, and Ca homeostasis in nonexcitable cells. JPHs are anchored in the ER/SR through the C-terminal transmembrane domain (TMD). Their N-terminal Membrane-Occupation-Recognition-Nexus (MORN) motifs can bind phospholipids. Whether MORN motifs alone are sufficient to stabilize JPH-PM binding is not clear. We investigate whether S-palmitoylation of cysteine (Cys), a critical mechanism controlling peripheral protein binding to PM, occurs in JPHs. We focus on JPH2 that has four Cys residues: three flanking the MORN motifs and one in the TMD. Using palmitate-alkyne labeling, Cu(I)-catalyzed alkyne-azide cycloaddition reaction with azide-conjugated biotin, immunoblotting, proximity-ligation-amplification, and various imaging techniques, we show that JPH2 is S-palmitoylatable, and palmitoylation is essential for its ER/SR-PM tether function. Palmitoylated JPH2 binds to lipid-raft domains in PM, whereas palmitoylation of TMD-located Cys stabilizes JPH2's anchor in the ER/SR membrane. Binding to lipid-raft domains protects JPH2 from depalmitoylation. Unpalmitoylated JPH2 is largely excluded from lipid rafts and loses the ability to form stable ER/SR-PM junctions. In adult ventricular myocytes, native JPH2 is S-palmitoylatable, and palmitoylated JPH2 forms distinct PM puncta. Sequence alignment reveals that the palmitoylatable Cys residues in JPH2 are conserved in other JPHs, suggesting that palmitoylation may also enhance ER/SR-PM tethering by these proteins.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Ácido Palmítico/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos
7.
J Mol Cell Cardiol ; 135: 1-9, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31362018

RESUMEN

BACKGROUND: K channel interacting protein 2 (KChIP2), initially cloned as Kv4 channel modulator, is a multi-tasking protein. In addition to modulating several cardiac ion channels at the plasma membrane, it can also modulate microRNA transcription inside nuclei, and interact with presenilins to modulate Ca release through RyR2 in the cytoplasm. However, the mechanism regulating its subcellular distribution is not clear. OBJECTIVE: We tested whether palmitoylation drives KChIP2 trafficking and distribution in cells, and whether the distribution pattern of KChIP2 in cardiac myocytes is sensitive to cellular milieu. METHOD: We conducted imaging and biochemical experiments on palmitoylatable and unpalmitoylatable KChIP2 variants expressed in COS-7 cells and in cardiomyocytes, and on native KChIP2 in myocytes. RESULTS: In COS-7 cells, palmitoylatable KChIP2 clustered to plasma membrane, while unpalmitoylatable KChIP2 exhibited higher cytoplasmic mobility and faster nuclear entry. The same differences in distribution and mobility were observed when these KChIP2 variants were expressed in cardiac myocytes, indicating that the palmitoylation-dependent distribution and trafficking are intrinsic properties of KChIP2. Importantly, acute stress in a rat model of cardiac arrest/resuscitation induced changes in native KChIP2 resembling those of KChIP2 depalmitoylation, promoting KChIP2 nuclear entry. CONCLUSION: The palmitoylation status of KChIP2 determines its subcellular distribution in cardiac myocytes. Stress promotes nuclear entry of KChIP2, diverting it from ion channel modulation at the plasma membrane to other functions in the nuclear compartment.


Asunto(s)
Paro Cardíaco/genética , Proteínas de Interacción con los Canales Kv/genética , Lipoilación/genética , Potasio/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/metabolismo , Paro Cardíaco/metabolismo , Paro Cardíaco/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Palmitatos/farmacología , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética
9.
Heart Rhythm ; 16(1): 108-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30075281

RESUMEN

BACKGROUND: In the heart, slow delayed rectifier channels provide outward currents (IKs) for action potential (AP) repolarization in a region- and context-dependent manner. In diseased hearts, chronic elevation of angiotensin II (Ang II) may remodel IKs in a region-dependent manner, contributing to atrial and ventricular arrhythmias of different mechanisms. OBJECTIVE: The purpose of this study was to study whether/how chronic in vivo Ang II administration remodels IKs in atrial and ventricular myocytes. METHODS: We used the guinea pig (GP) model whose myocytes express robust IKs. GPs were implanted with minipumps containing Ang II or vehicle. Treatment continued for 4-6 weeks. We used patch clamp, immunofluorescence/confocal microscopy, and immunoblots to evaluate changes in IKs function and to explore the underlying mechanisms. RESULTS: We confirmed the pathologic state of the heart after chronic Ang II treatment. IKs density was increased in atrial myocytes but decreased in ventricular myocytes in Ang II- vs vehicle-treated animals. The former was correlated with an increase in KCNQ1/KCNE1 colocalization in myocyte periphery, whereas the latter was correlated with a decrease in KCNQ1 protein level. Interestingly, these changes in IKs were not translated into expected alterations in AP duration or plateau voltage, indicating that other currents were involved. In atrial myocytes from Ang II-treated animals, the L-type Ca channel current was increased, contributing to AP plateau elevation and AP duration prolongation. CONCLUSION: IKs is differentially modulated by chronic in vivo Ang II administration between atrial and ventricular myocytes. Other currents remodeled by Ang II treatment also contribute to changes in action potentials.


Asunto(s)
Angiotensina II/administración & dosificación , Atrios Cardíacos/fisiopatología , Ventrículos Cardíacos/fisiopatología , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Cobayas , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología , Vasoconstrictores/administración & dosificación
10.
Artículo en Inglés | MEDLINE | ID: mdl-28611207

RESUMEN

BACKGROUND: KCNQ1 and KCNE1 assemble to form the slow delayed rectifier (IKs) channel critical for shortening ventricular action potentials during high ß-adrenergic tone. However, too much IKs under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the IKs amplitudes under basal conditions and in response to stress. METHODS AND RESULTS: We express fluorescently tagged KCNQ1 and KCNE1 in adult ventricular myocytes and follow their biogenesis and trafficking paths. We also study the distribution patterns of native KCNQ1 and KCNE1, and their relationship to IKs amplitudes, in chronically stressed ventricular myocytes, and use COS-7 cell expression to probe the underlying mechanism. We show that KCNQ1 and KCNE1 are both translated in the perinuclear region but traffic by different routes, independent of each other, to their separate subcellular locations. KCNQ1 mainly resides in the jSR (junctional sarcoplasmic reticulum), whereas KCNE1 resides on the cell surface. Under basal conditions, only a small portion of KCNQ1 reaches the cell surface to support the IKs function. However, in response to chronic stress, KCNQ1 traffics from jSR to the cell surface to boost the IKs amplitude in a process depending on Ca binding to CaM (calmodulin). CONCLUSIONS: In adult ventricular myocytes, KCNE1 maintains a stable presence on the cell surface, whereas KCNQ1 is dynamic in its localization. KCNQ1 is largely in an intracellular reservoir under basal conditions but can traffic to the cell surface and boost the IKs amplitude in response to stress.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Hipertensión/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Potenciales de Acción , Animales , Células COS , Calmodulina/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Cobayas , Ventrículos Cardíacos/fisiopatología , Hipertensión/fisiopatología , Canal de Potasio KCNQ1/biosíntesis , Canal de Potasio KCNQ1/genética , Canales de Potasio con Entrada de Voltaje/biosíntesis , Canales de Potasio con Entrada de Voltaje/genética , Transporte de Proteínas , Ratas Endogámicas SHR , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo , Transfección
11.
Heart Rhythm ; 13(3): 743-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26538326

RESUMEN

BACKGROUND: In a canine model of premature ventricular contraction-induced cardiomyopathy (PVC-CM), Cav1.2 is downregulated and misplaced from transverse tubules (T tubules). Junctophilin-2 (JPH-2) is also downregulated. OBJECTIVES: The objectives of this study were to understand the role of JPH-2 in PVC-CM and to probe changes in other proteins involved in dyad structure and function. METHODS: We quantify T-tubule contents (di-8-ANEPPS fluorescence in live myocytes), examine myocyte ultrastructures (electron microscopy), probe JPH-2-interacting proteins (co-immunoprecipitation), quantify dyad and nondyad protein levels (immunoblotting), and examine subcellular distributions of dyad proteins (immunofluorescence/confocal microscopy). We also test direct JPH-2 modulation of channel function (vs indirect modulation through dyad formation) using heterologous expression. RESULTS: PVC myocytes have reduced T-tubule contents but otherwise normal ultrastructures. Among 19 proteins examined, only JPH-2, bridging integrator-1 (BIN-1), and Cav1.2 are highly downregulated in PVC hearts. However, statistical analysis indicates a general reduction in dyad protein levels when JPH-2 is downregulated. Furthermore, several dyad proteins, including Na/Ca exchanger, are missing or shifted from dyads to the peripheral surface in PVC myocytes. JPH-2 directly or indirectly interacts with Cai-handling proteins, Cav1.2 and KCNQ1, although not BIN-1 or other scaffolding proteins tested. Expression in mammalian cells that do not have dyads confirms direct JPH-2 modulation of the L-type Ca channel current (Cav1.2/voltage-gated Ca channel ß subunit 2) and slow delayed rectifier current (KCNQ1/KCNE1). CONCLUSION: JPH-2 is more than a "dyad glue": it can modulate Cai handling and ion channel function in the dyad region. Downregulation of JPH-2, BIN-1, and Cav1.2 plays a deterministic role in PVC-CM. Dissecting the hierarchical relationship among the three is necessary for the design of therapeutic interventions to prevent the progression of PVC-CM.


Asunto(s)
Cardiomiopatías/metabolismo , Proteínas de la Membrana/biosíntesis , Miocardio/metabolismo , Intercambiador de Sodio-Calcio/biosíntesis , Complejos Prematuros Ventriculares/metabolismo , Animales , Cardiomiopatías/etiología , Cardiomiopatías/patología , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Immunoblotting , Microscopía Confocal , Microscopía Electrónica , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Complejos Prematuros Ventriculares/complicaciones , Complejos Prematuros Ventriculares/patología
12.
Comb Chem High Throughput Screen ; 18(3): 269-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747449

RESUMEN

The hERG potassium channel is currently emerging as a potential target for the treatment of some forms of arrhythmias or to contrast an unintentional channel block caused by drugs. Despite its therapeutic relevance, so far only few compounds are described as able to enhance channel function by potentiating hERG currents. This gap is also related to the lack of hERG crystal structure which strongly limits the possibility to employ structure-based techniques in the search and design of novel activators. To overcome this limitation, in the present work, a ligand-based virtual screening was performed using as separate search queries two conformations of NS1643, the most deeply investigated and better characterized hERG activator. The library of compounds resulting from the virtual screening was then clustered based on recurring chemical features, and 5 hits were selected to be evaluated for their ability to enhance hERG current in vitro. Compound 3 showed a good activating effect, also displaying a mechanism of action similar to that of NS1643. Moreover, the most interesting compounds were further investigated by synthesizing in a parallel fashion some analogs, with the aim to get insights about structure-activity relationships.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Bloqueadores de los Canales de Potasio/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Ligandos , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
13.
Biophys J ; 108(1): 62-75, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25564853

RESUMEN

The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4-S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K(+) ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Neurotransmisores/farmacología , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Canales de Potasio de Tipo Rectificador Tardío/genética , Perros , Cobayas , Iones/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Potasio/metabolismo , Estructura Secundaria de Proteína , Transfección
15.
Heart Rhythm ; 11(11): 2064-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25046857

RESUMEN

BACKGROUND: Frequent premature ventricular contractions (PVCs) are associated with increased risk of sudden cardiac death and can cause secondary cardiomyopathy. OBJECTIVE: We sought to determine the mechanism(s) responsible for prolonged refractory period and left ventricular (LV) dysfunction demonstrated in our canine model of PVC-induced cardiomyopathy. METHODS: Single myocytes were isolated from LV free wall of PVC and control canines and used for patch-clamp recording, intracellular Ca(2+) measurements, and immunocytochemistry/confocal microscopy. LV tissues adjacent to the area of myocyte isolation were used for the immunoblot quantification of protein expression. RESULTS: In the PVC group, LV ejection fraction decreased from 57.6% ± 1.5% to 30.4% ± 3.1% after ≥4 months of ventricular bigeminy. Compared to control myocytes, PVC myocytes had decreased densities of both outward (transient outward current [Ito] and inward rectifier current [IK1]) and inward (L-type Ca current [ICaL]) currents, but no consistent changes in rapid or slow delayed rectifier currents. The reduction in Ito, IK1, and ICaL was accompanied by decreased protein levels of their channel subunits. The extent of reduction in Ito, IK1, and ICaL varied among PVC myocytes, creating marked heterogeneity in action potential configurations and durations. PVC myocytes showed impaired Ca-induced Ca release from the sarcoplasmic reticulum (SR), without increase in SR Ca leak or decrease in SR Ca store. This was accompanied by a decrease in dyad scaffolding protein, junctophilin-2, and loss of Cav1.2 registry with Ca-releasing channels (ryanodine receptor 2). CONCLUSION: PVCs increase dispersion of action potential configuration/duration, a risk factor for sudden cardiac death, because of the heterogeneous reduction in Ito, IK1, and ICaL. The excitation-contraction coupling is impaired because of the decrease in ICaL and Cav1.2 misalignment with respect to ryanodine receptor 2.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/fisiopatología , Células Musculares/citología , Complejos Prematuros Ventriculares/complicaciones , Complejos Prematuros Ventriculares/fisiopatología , Animales , Modelos Animales de Enfermedad , Perros , Immunoblotting , Inmunohistoquímica , Microscopía Confocal , Técnicas de Placa-Clamp
16.
Biophys J ; 105(11): 2461-73, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24314077

RESUMEN

The slow delayed rectifier (I(KS)) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of I(KS)-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in I(KS) channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.


Asunto(s)
Canal de Potasio KCNQ1/química , Simulación de Dinámica Molecular , Canales de Potasio con Entrada de Voltaje/química , Secuencia de Aminoácidos , Humanos , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Datos de Secuencia Molecular , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
17.
J Biol Chem ; 288(49): 35358-71, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24142691

RESUMEN

Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca(2+)]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes.


Asunto(s)
Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Células COS , Calnexina/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cobayas , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Canal de Potasio KCNQ1/genética , Estrés Oxidativo , Canales de Potasio con Entrada de Voltaje/genética , Transporte de Proteínas , Ratas , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
18.
J Gen Physiol ; 140(6): 653-69, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23183700

RESUMEN

KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a "repolarization reserve" in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process. KCNE1 and KCNE2 share the transmembrane topology and a high degree of sequence homology in TMD and surrounding regions. The structural basis for their distinctly different effects on KCNQ1 is not clear. To address this question, we apply cysteine (Cys) scanning mutagenesis to TMDs and EJMs of KCNE1 and KCNE2. We analyze the patterns of functional perturbation to identify high impact positions, and probe disulfide formation between engineered Cys side chains on KCNE subunits and native Cys on KCNQ1. We also use methanethiosulfonate reagents to probe the relationship between EJMs of KCNE subunits and KCNQ1. Our data suggest that the TMDs of both KCNE subunits are at about the same location but interact differently with KCNQ1. In particular, the much closer contact of KCNE2 TMD with KCNQ1, relative to that of KCNE1, is expected to impact the allosteric modulation of KCNQ1 pore conductance and may explain their differential effects on the KCNQ1 current amplitude. KCNE1 and KCNE2 also differ in the relationship between their EJMs and KCNQ1. Although the EJM of KCNE1 makes intimate contacts with KCNQ1, there appears to be a crevice between KCNQ1 and KCNE2. This putative crevice may perturb the electrical field around the voltage-sensing domain of KCNQ1, contributing to the differential effects of KCNE2 versus KCNE1 on KCNQ1 gating kinetics.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Cisteína/genética , Cisteína/metabolismo , Activación del Canal Iónico/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Oocitos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 302(4): H910-22, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22180649

RESUMEN

KCNE2 functions as an auxiliary subunit in voltage-gated K and HCN channels in the heart. Genetic variations in KCNE2 have been linked to long QT syndrome. The underlying mechanisms are not entirely clear. One of the issues is whether KCNE2 protein is expressed in ventricles. We use adenovirus-mediated genetic manipulations of adult cardiac myocytes to validate two antibodies (termed Ab1 and Ab2) for their ability to detect native KCNE2 in the heart. Ab1 faithfully detects native KCNE2 proteins in spontaneously hypertensive rat and guinea pig hearts. In both cases, KCNE2 protein is more abundant in ventricles than in atria. In both ventricular and atrial myocytes, KCNE2 protein is preferentially distributed on the cell surface. Ab1 can detect a prominent KCNE2 band in human ventricular muscle from nonfailing hearts. The band intensity is much fainter in atria and in failing ventricles. Ab2 specifically detects S98 phosphorylated KCNE2. Through exploring the functional significance of S98 phosphorylation, we uncover a novel mechanism by which KCNE2 modulates the human ether-a-go-go related gene (hERG) current amplitude: by accelerating hERG protein degradation and thus reducing the hERG protein level on the cell surface. S98 phosphorylation appears to be required for this modulation, so that S98 dephosphorylation leads to an increase in hERG/rapid delayed rectifier current amplitude. Our data confirm that KCNE2 protein is expressed in the ventricles of human and animal models. Furthermore, KCNE2 can modulate its partner channel function not only by altering channel conductance and/or gating kinetics, but also by affecting protein stability.


Asunto(s)
Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteolisis , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Perros , Femenino , Cobayas , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Humanos , Masculino , Modelos Animales , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio con Entrada de Voltaje/análisis , Ratas , Ratas Endogámicas SHR , Canales de Potasio Shal , Regulador Transcripcional ERG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA