RESUMEN
An ab initio investigation of the family of molecular compounds TM_{2}X is conducted, where TM is either TMTSF or TMTTF and X takes centrosymmetric monovalent anions. By deriving the extended Hubbard-type Hamiltonians from first-principles band calculations and evaluating not only the intermolecular transfer integrals but also the Coulomb parameters, we discuss their material dependence in the unified phase diagram. Furthermore, we apply the many-variable variational Monte Carlo method to accurately determine the symmetry-breaking phase transitions, and show the development of the charge and spin orderings. We show that the material-dependent parameter can be taken as the correlation effect, represented by the value of the screened on-site Coulomb interaction U relative to the intrachain transfer integrals, for the comprehensive understanding of the spin and charge ordering in this system.
RESUMEN
Lithium-ion-encapsulated fullerenes (Li+@C60) are 3D superatoms with rich oxidative states. Here we show a conductive and magnetically frustrated metal-fullerene-bonded framework {[Cu4(Li@C60)(L)(py)4](NTf2)(hexane)}n (1) (L = 1,2,4,5-tetrakis(methanesulfonamido)benzene, py = pyridine, NTf2- = bis(trifluoromethane)sulfonamide anion) prepared from redox-active dinuclear metal complex Cu2(L)(py)4 and lithium-ion-encapsulated fullerene salt (Li+@C60)(NTf2-). Electron donor Cu2(L)(py)2 bonds to acceptor Li+@C60 via eight CuâC bonds. Cu-C bond formation stems from spontaneous charge transfer (CT) between Cu2(L)(py)4 and (Li+@C60)(NTf2-) by removing the two-terminal py molecules, yielding triplet ground state [Cu2(L)(py)2]+(Li+@C60â¢-), evidenced by absorption and electron paramagnetic resonance (EPR) spectra, magnetic properties and quantum chemical calculations. Moreover, Li+@C60â¢- radicals (S = ½) and Cu2+ ions (S = ½) interact antiferromagnetically in triangular spin lattices in the absence of long-range magnetic ordering to 1.8 K. The low-temperature heat capacity indicated that compound 1 is a potential candidate for an S = ½ quantum spin liquid (QSL).
RESUMEN
Single-component molecular conductors form an important class of materials showing exotic quantum phenomena, owing to the range of behavior they exhibit under physical stimuli. We report the effect of high pressure on the electrical properties and crystal structure of the single-component crystal [Ni(dddt)2] (where dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). The system is isoelectronic and isostructural with [Pd(dddt)2], which is the first example of a single-component molecular crystal that exhibits nodal line semimetallic behavior under high pressure. Systematic high pressure four-probe electrical resistivity measurements were performed up to 21.6 GPa, using a Diamond Anvil Cell (DAC), and high pressure single crystal synchrotron X-ray diffraction was performed up to 11.2 GPa. We found that [Ni(dddt)2] initially exhibits a decrease of resistivity upon increasing pressure but, unlike [Pd(dddt)2], it shows pressure-independent semiconductivity above 9.5 GPa. This correlates with decreasing changes in the unit cell parameters and intermolecular interactions, most notably the π-π stacking distance within chains of [Ni(dddt)2] molecules. Using first-principles density functional theory (DFT) calculations, based on the experimentally-determined crystal structures, we confirm that the band gap decreases with increasing pressure. Thus, we have been able to rationalize the electrical behavior of [Ni(dddt)2] in the pressure-dependent regime, and suggest possible explanations for its pressure-independent behavior at higher pressures.
Asunto(s)
Complejos de Coordinación/química , Níquel/química , Modelos Moleculares , Presión , Difracción de Rayos XRESUMEN
Single-component molecular conductors can provide a variety of electronic states. We demonstrate here that the Dirac electron system emerges in a single-component molecular conductor under high pressure. First-principles density functional theory calculations revealed that Dirac cones are formed in the single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate), which shows temperature-independent resistivity (zero-gap behavior) at 12.6 GPa. The Dirac cone formation in [Pd(dddt)2] can be understood by a tight-binding model. The Dirac points originate from the HOMO and LUMO bands, each of which is associated with different molecular layers. Overlap of these two bands provides a closed intersection at the Fermi level (Fermi line) if there is no HOMO-LUMO coupling. Two-step HOMO-LUMO couplings remove the degeneracy on the Fermi line, resulting in gap formation. The Dirac cones emerge at the points where the Fermi line intersects with a line on which the HOMO-LUMO coupling is zero.
RESUMEN
We study the electronic structure and vibrational modes of several amides M(NH(2))(n) and alanates M(AlH(4))(n) (M = K, Na, Li, Ca and Mg), focusing on the role of cation states. Calculated breathing stretching vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing mode frequencies and the structural parameters of NH(2) vary in accordance with the ionization energy of cation. The tendency may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH(2))(-). The microscopic mechanism of correlations between the vibration frequencies and structural parameters is elucidated in relation to the electronic structure. A possible similar tendency in the alanates is also discussed.