Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Comput Biol Med ; 182: 109196, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362000

RESUMEN

Cellular senescence (CS) is characterized by the irreversible cell cycle arrest and plays a key role in aging and diseases, such as cancer. Recent years have witnessed the burgeoning exploration of the intricate relationship between CS and cancer, with CS recognized as either a suppressing or promoting factor and officially acknowledged as one of the 14 cancer hallmarks. However, a comprehensive characterization remains absent from elucidating the divergences of this relationship across different cancer types and its involvement in the multi-facets of tumor development. Here we systematically assessed the cellular senescence of over 10,000 tumor samples from 33 cancer types, starting by defining a set of cancer-associated CS signatures and deriving a quantitative metric representing the CS status, called CS score. We then investigated the CS heterogeneity and its intricate relationship with the prognosis, immune infiltration, and therapeutic responses across different cancers. As a result, cellular senescence demonstrated two distinct prognostic groups: the protective group with eleven cancers, such as LIHC, and the risky group with four cancers, including STAD. Subsequent in-depth investigations between these two groups unveiled the potential molecular and cellular mechanisms underlying the distinct effects of cellular senescence, involving the divergent activation of specific pathways and variances in immune cell infiltrations. These results were further supported by the disparate associations of CS status with the responses to immuno- and chemo-therapies observed between the two groups. Overall, our study offers a deeper understanding of inter-tumor heterogeneity of cellular senescence associated with the tumor microenvironment and cancer prognosis.

2.
ACS Appl Mater Interfaces ; 16(37): 49053-49068, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39241037

RESUMEN

Immunotherapy has been extensively utilized and studied as a prominent therapeutic strategy for tumors. However, the presence of a hypoxic immunosuppressive tumor microenvironment significantly reduces the efficacy of the treatment, thus impeding its application. In addition, the hypoxic microenvironment can also lead to the enrichment of immunosuppressive cells and reduce the effectiveness of tumor immunotherapy; nanoparticles with biocatalytic activity have the ability to relieve hypoxia in tumor tissues and deliver drugs to target cells and have been widely concerned and applied in the field of tumor therapy. The present study involved the development of a dual nanodelivery system that effectively targets the immune system to modify the tumor microenvironment (TME). The nanodelivery system was developed by incorporating R848 and Imatinib (IMT) into Pt nanozyme loaded hollow polydopamine (P@HP) nanocarriers. Subsequently, their surface was modified with specifically targeted peptides that bind to M2-like macrophages and regulatory T (Treg) cells, thereby facilitating the precise targeting of these cells. When introduced into the tumor model, the nanocarriers were able to selectively target immune cells in tumor tissue, causing M2-type macrophages to change into the M1 phenotype and reducing Treg activation within the tumor microenvironment. In addition, the carriers demonstrated exceptional biocatalytic activity, effectively converting H2O2 into oxygen and water at the tumor site while the drug was active, thereby alleviating the hypoxic inhibitory conditions present in the tumor microenvironment. Additionally, this further enhanced the infiltration of M1-type macrophages and cytotoxic T lymphocytes. Moreover, when used in conjunction with immune checkpoint therapy, the proposed approach demonstrated enhanced antitumor immunotherapeutic effects. The bimodal targeted immunotherapeutic strategy developed in the present study overcomes the drawbacks of traditional immunotherapy approaches while offering novel avenues for the treatment of cancer.


Asunto(s)
Inmunoterapia , Macrófagos , Polímeros , Linfocitos T Reguladores , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Ratones , Polímeros/química , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Indoles/química , Nanopartículas/química , Línea Celular Tumoral , Imidazoles
3.
Oncogenesis ; 13(1): 31, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266549

RESUMEN

BAP1, BRCA1-Associated Protein 1, serves as a novel tumor suppressor through the deubiquitination of monoubiquitination of H2A and subsequent gene transcriptional regulation. Regulated cell death like apoptosis or ferroptosis is considered an essential mechanism mediating tumor suppression. Previous reports, including ours, have demonstrated that BAP1 could promote apoptosis and ferroptosis to inhibit tumor development. Whether BAP1 regulated additional types of cell death remains unclear. Disulfidptosis is a recently identified novel cell death mode characterized by aberrant accumulation of intracellular disulfide (e.g., cystine) and depletion of NADPH. In this study, we first demonstrated that BAP1 could significantly protect disulfidptosis induced by glucose starvation, which is validated by various cell death inhibitors and the accumulation of disulfide bonds in the cytoskeleton proteins. BAP1 is known to inhibit SLC7A11 expression. We found that the protective effect of BAP1 against disulfidptosis was counteracted when overexpressing SLC7A11 or adding additional cystine. Conversely, BAP1-mediated suppression of disulfidptosis was largely abrogated when SLC7A11-mediated cystine uptake was inhibited by the knockout of SLC7A11 or erastin treatment. Besides, high BAP1 expression showed lower NADP+/NADPH levels, which might confer resistance to disulfidptosis. Consistent with these observations, the expression level of BAP1 was also positively correlated with NADPH-related genes in KIRC patients, though the underlying mechanism mediating NADPH regulation remains further investigation. In summary, our results revealed the role of BAP1 in the regulation disulfidptosis and provided new insights into the understanding of disulfidptosis in tumor development.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119773, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38844182

RESUMEN

Hepatocellular carcinoma (HCC), the leading cause of cancer-related deaths worldwide, is characterised by rapid growth and marked invasiveness. Accumulating evidence suggests that deubiquitinases play a pivotal role in HCC growth and metastasis. However, the expression of the deubiquitinase FAM188B and its biological functions in HCC remain unknown. The aim of our study was to investigate the potential role of FAM188B in HCC. The expression of FAM188B was significantly upregulated in liver cancer cells compared to normal liver cells, both at the transcriptional and translational levels. Similarly, FAM188B expression was higher in liver cancer tissues than in normal liver tissues. Bioinformatic analysis revealed that high FAM188B expression was associated with poor prognosis in patients with HCC. We further demonstrated that FAM188B knockdown inhibited cell proliferation, epithelial-mesenchymal transition, migration and invasion both in vitro and in vivo. Mechanistically, FAM188B knockdown significantly inhibited the hnRNPA1/PKM2 pathway in HCC cells. FAM188B may inhibit ubiquitin-mediated degradation of hnRNPA1 through deubiquitination. Notably, we observed that the inhibitory effects of FAM188B knockdown on HCC cell proliferation, migration and invasion were reversed when hnRNPA1 expression was restored. In conclusion, FAM188B promotes HCC progression by enhancing the deubiquitination of hnRNPA1 and subsequently activating the hnRNPA1/PKM2 pathway. Therefore, targeting FAM188B is a potential strategy for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Proteínas Portadoras , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1 , Neoplasias Hepáticas , Proteínas de la Membrana , Invasividad Neoplásica , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Proliferación Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Ratones Desnudos , Transición Epitelial-Mesenquimal/genética , Masculino , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Femenino
5.
Cell Death Discov ; 10(1): 298, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909032

RESUMEN

LIMA1 is a LIM domain and Actin binding 1 protein that acts as a skeleton protein to promote cholesterol absorption, which makes it an ideal target for interfering with lipid metabolism. However, the detailed regulation of LIMA1 remains unclear. Here, we identified that ring finger protein 40 (RNF40), an E3 ubiquitin ligase previously known as an epigenetic modifier to increase H2B ubiquitination, mediated the ubiquitination of LIMA1 and thereby promoted its degradation in a proteasome-dependent manner. Fraction studies revealed that the 1-166aa fragment of LIMA1 was indispensable for the interaction with RNF40, and at least two domains of RNF40 might mediate the association of RNF40 with LIMA1. Notably, treatment with simvastatin dramatically decreased the levels of CHO and TG in control cells rather than cells with overexpressed LIMA1. Moreover, RNF40 significantly decreased lipid content, which could be reversed by LIMA1 overexpression. These findings suggest that E3 ubiquitin ligase RNF40 could directly target LIMA1 and promote its protein degradation in cytoplasm, leading to the suppression of lipid accumulation mediated by LIMA1. Collectively, this study unveils that RNF40 is a novel E3 ubiquitin ligase of LIMA1, which underpins its high therapeutic value to combat dysregulation of lipid metabolism.

6.
Biol Direct ; 19(1): 31, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658981

RESUMEN

BACKGROUND: Deubiquitinating enzymes (DUBs) cleave ubiquitin on substrate molecules to maintain protein stability. DUBs reportedly participate in the tumorigenesis and tumour progression of hepatocellular carcinoma (HCC). OTU deubiquitinase 5 (OTUD5), a DUB family member, has been recognized as a critical regulator in bladder cancer, breast cancer and HCC. However, the expression and biological function of OTUD5 in HCC are still controversial. RESULTS: We determined that the expression of OTUD5 was significantly upregulated in HCC tissues. High levels of OTUD5 were also detected in most HCC cell lines. TCGA data analysis demonstrated that high OTUD5 expression indicated poorer overall survival in HCC patients. OTUD5 silencing prominently suppressed HCC cell proliferation, while its overexpression markedly enhanced the proliferation of HCC cells. Mass spectrometry analysis revealed solute carrier family 38 member 1 (SLC38A1) as a candidate downstream target protein of OTUD5. Coimmunoprecipitation analysis confirmed the interaction between OTUD5 and SLC38A1. OTUD5 knockdown reduced and OTUD5 overexpression increased SLC38A1 protein levels in HCC cells. However, OTUD5 alteration had no effect on SLC38A1 mRNA expression. OTUD5 maintained SLC38A1 stability by preventing its ubiquitin-mediated proteasomal degradation. SLC38A1 silencing prominently attenuated the OTUD5-induced increase in HCC cell proliferation. Finally, OTUD5 knockdown markedly suppressed the growth of HCC cells in vivo. CONCLUSIONS: OTUD5 is an oncogene in HCC. OTUD5 contributes to HCC cell proliferation by deubiquitinating and stabilizing SLC38A1. These results may provide a theoretical basis for the development of new anti-HCC drugs.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ubiquitinación
7.
Cancer Lett ; 589: 216832, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537774

RESUMEN

Yes-associated protein (YAP) is an essential driver of hepatocellular carcinoma (HCC) progression and the ubiquitin-proteasome system controls its abundance. However, the role of ubiquitin-specific protease 40 (USP40) in YAP stability remains unclear. Here, USP40 was first identified as a novel regulator of YAP abundance and its target genes in HCC cells. USP40 interacted with YAP to remove the lysine 48 (K48)-linked polyubiquitination of YAP at K252 and K315 sites, thereby maintaining YAP stability. USP40 facilitated the proliferation, colony formation, migration and spheroid formation of HCC cells in vitro and promoted HCC growth in vivo in a YAP-dependent manner. In turn, YAP transcriptionally activated USP40 expression in HCC cells. RNA sequencing analysis showed that about 37% of USP40-regulated genes overlapped with YAP-regulated genes. Interestingly, stiffness-induced USP40 upregulation was abolished by YAP knockdown, and USP40 knockdown attenuated stiffness-induced YAP accumulation in HCC cells. Clinical data demonstrated that USP40 was positively associated with YAP expression in HCC tissues and its high expression indicated a poor prognosis. In conclusion, the USP40/YAP positive feedback loop contributes to HCC progression, suggesting that USP40 may be a promising drug target for anti-HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
8.
Biol Direct ; 19(1): 13, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308285

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignant tumor that poses a major threat to people's lives and health. Previous studies have found that multiple deubiquitinating enzymes are involved in the pathogenesis of HCC. The purpose of this work was to elucidate the function and mechanism of the deubiquitinating enzyme USP40 in HCC progression. METHODS: The expression of USP40 in human HCC tissues and HCC cell lines was investigated using RT-qPCR, western blotting and immunohistochemistry (IHC). Both in vitro and in vivo experiments were conducted to determine the crucial role of USP40 in HCC progression. The interaction between USP40 and Claudin1 was identified by immunofluorescence, co-immunoprecipitation and ubiquitination assays. RESULTS: We discovered that USP40 is elevated in HCC tissues and predicts poor prognosis in HCC patients. USP40 knockdown inhibits HCC cell proliferation, migration and stemness, whereas USP40 overexpression shows the opposite impact. Furthermore, we confirmed that Claudin1 is a downstream gene of USP40. Mechanistically, USP40 interacts with Claudin1 and inhibits its polyubiquitination to stabilize Claudin1 protein. CONCLUSIONS: Our study reveals that USP40 enhances HCC malignant development by deubiquitinating and stabilizing Claudin1, suggesting that targeting USP40 may be a novel approach for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ubiquitinación
9.
J Nanobiotechnology ; 21(1): 500, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129928

RESUMEN

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a pathophysiological process during liver transplantation, characterized by insufficient oxygen supply and subsequent restoration of blood flow leading to an overproduction of reactive oxygen species (ROS), which in turn activates the inflammatory response and leads to cellular damage. Therefore, reducing excess ROS production in the hepatic microenvironment would provide an effective way to mitigate oxidative stress injury and apoptosis during HIRI. Nanozymes with outstanding free radical scavenging activities have aroused great interest and enthusiasm in oxidative stress treatment. RESULTS: We previously demonstrated that carbon-dots (C-dots) nanozymes with SOD-like activity could serve as free radicals scavengers. Herein, we proposed that C-dots could protect the liver from ROS-mediated inflammatory responses and apoptosis in HIRI, thereby improving the therapeutic effect. We demonstrated that C-dots with anti-oxidative stress and anti-inflammatory properties improved the survival of L-02 cells under H2O2 and LPS-treated conditions. In the animal model, Our results showed that the impregnation of C-dots could effectively scavenge ROS and reduce the expression of inflammatory cytokines, such as IL-1ß, IL-6, IL-12, and TNF-α, resulting in a profound therapeutic effect in the HIRI. To reveal the potential therapeutic mechanism, transcriptome sequencing was performed and the relevant genes were validated, showing that the C-dots exert hepatoprotective effects by modulating the hepatic inflammatory network and inhibiting apoptosis. CONCLUSIONS: With negligible systemic toxicity, our findings substantiate the potential of C-dots as a therapeutic approach for HIRI, thereby offering a promising intervention strategy for clinical implementation.


Asunto(s)
Peróxido de Hidrógeno , Daño por Reperfusión , Animales , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Apoptosis
10.
Int J Biol Sci ; 19(13): 4206-4222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705741

RESUMEN

Matrix stiffness is a central modulator of hepatic stellate cells (HSCs) activation and hepatic fibrogenesis. However, the long non-coding RNAs (lncRNAs)-regulated transcriptional factors linking matrix stiffness to alterations in HSCs phenotype are not completely understood. In this study, we investigated the effects of matrix stiffness on HSCs activation and its potential mechanism. Through analysis the RNA-seq data with human primary HSCs cultured on 0.4 kPa and 25.6 kPa hydrogel, we identified that forkhead box protein C2 (FOXC2) and its antisense lncRNA FXOC2-AS1 as the new mechanosensing transcriptional regulators that coordinate HSCs responses to the matrix stiffness, moreover, FOXC2 and FOXC2-AS1 expression were also elevated in human fibrosis and cirrhosis tissues. The matrix stiffness was sufficient to activate HSCs into myofibroblasts, resulting in nuclear accumulation of FOXC2. Disrupting FOXC2 and FOXC2-AS1 level abrogated stiffness-induced activation of HSCs. Further mechanistic studies displayed that stiffness-upregulated lncRNA FOXC2-AS1 had no influence on transcription of FOXC2. FOXC2-AS1 exerted its biological function through maintaining the RNA stability of FOXC2, and protecting FOXC2 mRNA from degradation by RNA exosome complex. Additionally, rescue assays confirmed that reintroduction of FOXC2 in FOXC2-AS1-depleted HSCs reversed the repression of FOXC2-AS1 knockdown on stiffness-induced HSCs activation. In AAV6-treated mice fibrotic models, targeting FOXC2 in vivo lead to a reduced degree of liver fibrosis. In sum, our study uncovers a reciprocal crosstalk between matrix stiffness and FOXC2-AS1/FOXC2 axis leading to modulation of HSCs mechanoactivation and liver fibrosis, and present AAV6 shRNA as an effective strategy that targets FOXC2 leading to the resolution of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , ARN Largo no Codificante , Animales , Humanos , Ratones , Transdiferenciación Celular/genética , Modelos Animales de Enfermedad , Cirrosis Hepática/genética , Miofibroblastos , ARN Largo no Codificante/genética
11.
Oncol Rep ; 50(2)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37449518

RESUMEN

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that certain of the control western blotting data featured in Fig. 5 on p. 2581 had also appeared in a couple of other articles featuring several of the same authors [Tu K, Dou C, Zheng X, Li C, Yang W, Yao Y and Liu Q: Fibulin­5 inhibits hepatocellular carcinoma cell migration and invasion by down­regulating matrix metalloproteinase­7 expression. BMC Cancer 14: 938, 2014; and Gai X, Tu K, Li C, Roberts LR and Zheng X: Histone acetyltransferase PCAF accelerates apoptosis by repressing a GLI1/BCL2/BAX axis in hepatocellular carcinoma. Cell Death Dis 6: e1712, 2015]. In addition, the authors drew to the attention of the Editorial Office that a couple of mistakes were made during the assembly of Fig. 2D on p. 2579. The authors were able to re-examine their original data files, and realized that these figures had been inadvertently assembled incorrectly (they were also able to present the raw data from which these figures had been assembled to the Editorial Office). The revised versions of Figs. 2 and 5, containing the intended flow cytometric and western blotting data for these figures respectively, is shown on the next page. The authors wish to emphasize that the corrections made to these figures do not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports  34: 2576­2584, 2015; DOI: 10.3892/or.2015.4210].

12.
Apoptosis ; 28(9-10): 1304-1314, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37523039

RESUMEN

Amino acids (AAs) are crucial molecules for the synthesis of mammalian proteins as well as a source of energy and redox equilibrium maintenance. The development of tumors also requires AAs as nutrients. Increased AAs metabolism is frequently seen in tumor cells to produce enough biomass, energy, and reduction agents. However, increased AA demand may result in auxotrophy in some cancer cells, highlighting the vulnerabilities of cancers and exposing the AA metabolism as a potential target for cancer therapy. The dynamic balance of cell survival and death is required for cellular homeostasis, growth, and development. Malignant cells manage to avoid cell death through a range of mechanisms, such as developing an addiction to amino acids through metabolic adaptation. In order to offer some guidance for AA-targeted cancer therapy, we have outlined the function of AA metabolism in tumor progression, the modalities of cell death, and the regulation of AA metabolism on tumor cell death in this review.


Asunto(s)
Aminoácidos , Apoptosis , Animales , Aminoácidos/metabolismo , Proteínas , Homeostasis , Muerte Celular , Mamíferos/metabolismo
14.
Cell Mol Life Sci ; 80(5): 120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041420

RESUMEN

BACKGROUND: Hypoxia-inducible factors (HIFs) are the most essential endogenous transcription factors in the hypoxic microenvironment and regulate multiple genes involved in the proliferation, migration, invasion, and EMT of hepatocellular carcinoma (HCC) cells. However, the regulatory mechanism of HIFs in driving HCC progression remains poorly understood. METHODS: Gain- and loss-of-function experiments were carried out to investigate the role of TMEM237 in vitro and in vivo. The molecular mechanisms involved in HIF-1α-induced TMEM237 expression and TMEM237-mediated enhancement of HCC progression were confirmed by luciferase reporter, ChIP, IP-MS and Co-IP assays. RESULTS: TMEM237 was identified as a novel hypoxia-responsive gene in HCC. HIF-1α directly bound to the promoter of TMEM237 to transactivate its expression. The overexpression of TMEM237 was frequently detected in HCC and associated with poor clinical outcomes in patients. TMEM237 facilitated the proliferation, migration, invasion, and EMT of HCC cells and promoted tumor growth and metastasis in mice. TMEM237 interacted with NPHP1 and strengthened the interaction between NPHP1 and Pyk2 to trigger the phosphorylation of Pyk2 and ERK1/2, thereby contributing to HCC progression. The TMEM237/NPHP1 axis mediates hypoxia-induced activation of the Pyk2/ERK1/2 pathway in HCC cells. CONCLUSIONS: Our study demonstrated that HIF-1α-activated TMEM237 interacted with NPHP1 to activate the Pyk2/ERK pathway, thereby promoting HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Hipoxia/genética , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Microambiente Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
15.
ACS Nano ; 17(8): 7443-7455, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37057958

RESUMEN

Alcoholic liver injury (ALI) is the leading cause of serious liver disease, whereas current treatments are mostly supportive and unable to metabolize alcohol directly. Here we report a metabolic reprogramming strategy for targeted alcohol detoxification and ALI management based on a confined cascade nanoreactor. The nanoreactor (named AA@mMOF) is designed by assembling natural enzymes of alcohol oxidase (AOx) and aldehyde dehydrogenase (ALDH) in the cavity of a mesoporous metal organic framework (mMOF) nanozyme with intrinsic catalase (CAT)-like activity. By conducting confined AOx/CAT/ALDH cascade reactions, AA@mMOF enables self-accelerated alcohol degradation (>0.5 mg·mL-1·h-1) with negligible aldehyde diffusion and accumulation, reprogramming alcohol metabolism and allowing high-efficiency detoxification. Administered to high-dose alcohol-intoxicated mice, AA@mMOF shows surprising liver targeting and accumulation performance and dramatically reduces blood alcohol concentration and rapidly reverses unconsciousness and acute liver injury to afford targeted alcoholism treatment. Moreover, AA@mMOF dramatically alleviates fat accumulation and oxidative stress in the liver of chronic alcoholism mice to block and reverse the progression of ALI. By conducting confined AOx/CAT/ALDH cascade reactions for high-efficiency alcohol metabolism reprogramming, AA@mMOF nanoreactor offers a powerful modality for targeted alcohol detoxification and ALI management. The proposed confined cascade metabolic reprogramming strategy provides a paradigm shift for the treatment of metabolic diseases.


Asunto(s)
Alcoholismo , Ratones , Animales , Alcoholismo/metabolismo , Nivel de Alcohol en Sangre , Hígado/metabolismo , Etanol , Aldehído Deshidrogenasa/metabolismo , Nanotecnología
17.
Mol Ther ; 31(5): 1383-1401, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36855303

RESUMEN

Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , Colitis Ulcerosa/inducido químicamente , Inmunidad Adaptativa , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/efectos adversos
19.
J Nanobiotechnology ; 21(1): 21, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658555

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. RESULTS: In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. CONCLUSION: We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD.


Asunto(s)
Cerio , Enfermedades Inflamatorias del Intestino , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Cerio/farmacología , Citocinas/metabolismo , Fibrosis , Peróxido de Hidrógeno , Inflamación , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Tomografía , Tomografía Computarizada por Rayos X
20.
Nat Commun ; 14(1): 160, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631476

RESUMEN

Nanozymes with superoxide dismutase (SOD)-like activity have attracted increasing interest due to their ability to scavenge superoxide anion, the origin of most reactive oxygen species in vivo. However, SOD nanozymes reported thus far have yet to approach the activity of natural enzymes. Here, we report a carbon dot (C-dot) SOD nanozyme with a catalytic activity of over 10,000 U/mg, comparable to that of natural enzymes. Through selected chemical modifications and theoretical calculations, we show that the SOD-like activity of C-dots relies on the hydroxyl and carboxyl groups for binding superoxide anions and the carbonyl groups conjugated with the π-system for electron transfer. Moreover, C-dot SOD nanozymes exhibit intrinsic targeting ability to oxidation-damaged cells and effectively protect neuron cells in the ischemic stroke male mice model. Together, our study sheds light on the structure-activity relationship of C-dot SOD nanozymes, and demonstrates their potential for treating of oxidation stress related diseases.


Asunto(s)
Carbono , Superóxido Dismutasa , Animales , Ratones , Masculino , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA