Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Protein Cell ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252612

RESUMEN

Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to PKM2-dependent conventional caspase-3/GSDME cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-PD-1. In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.

2.
Pharmacol Res ; 209: 107406, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278298

RESUMEN

Affinity-oriented online ligand screening with LC coupled to different detectors is widely popular to capture active compounds from herbal medicines (HMs). However, false-positive extensively occurs because insufficient information is recorded for the existence and stability of ligand-protein complex. Here, efforts were made to advance the hit confidences via configuring post-column infusion-LC-energy-resolved-affinity MS (PCI-LC-ER-AMS) to achieve "four-in-one" monitoring of: 1) response decrement of potential ligands; 2) response decrement of protein; 3) ions relating to ligand-protein complexes; and 4) ligand-protein binding strength. Ligand fishing for Cyt C from HMs was conducted as a proof-of-concept. For utility justification, a mimic sample containing twelve well-defined ligands and two negative controls underwent LC separation and met Cyt C prior to Qtof-MS measurements. Compared to Cyt C- or ligand-free assay, twelve ligands instead of negative controls showed response decrements that were consistent with twelve negative peaks observed at retention times corresponding to the ligands in Cyt C ion current chromatogram. Serial ions correlating to each ligand-Cyt C complex were observed. After recording breakdown graphs, optimal collision energy (OCE) corresponding to the non-covalent bond dissociation was positively correlated with binding strength. Two HMs including Scutellariae Radix (SR) and Aconiti Lateralis Radix Preparata were investigated. Consequently, 24 compounds were merely fished from SR, and particularly, flavonoid glycosides exhibited greater OCEs and also binding strengths over aglycones. Affinity assays and cellular evaluations consolidated the significant interactions between each captured compound and Cyt C. Overall, PCI-LC-ER-AMS is eligible for confidence-enhanced online ligand screening for Cyt C from HMs through "four-in-one" measurement.

3.
Acta Pharm Sin B ; 14(9): 4045-4058, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309494

RESUMEN

Although serving as the workhorse, MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization. Because more information intrinsically correlates to more structural and concentration clues, here, efforts were devoted to comprehensively tracing and deciphering MS/MS behaviors through constructing triple three-dimensional (3×3D)-MS/MS spectrum. Ginsenosides-targeted metabolomics of notoginseng, one of the most famous edible medicinal plants, was employed as a proof-of-concept. Serial authentic ginsenosides were deployed to build the correlations between 3×3D-MS/MS spectra and structure/concentration features. Through assaying ginsenosides with progressive concentrations using QTOF-MS to configure 1st 3D spectrum, the generations of MS1 spectral signals, particularly multi-charged multimer anions, e.g., [2M-2H]2- and [2M+2HCOO]2- ions, relied on both concentration and the amount of sugar chains. By programming progressive collision energies to the front collision cell of Qtrap-MS device to gain 2nd 3D spectrum, optimal collision energy (OCE) corresponding to the glycosidic bond fission was primarily correlated with the masses of precursor and fragment ions and partially governed by the glycosidation site. The quantitative relationships between OCEs and masses of precursor and fragment ions were utilized to build large-scale quantitative program for ginsenosides. After applying progressive exciting energies to the back collision chamber to build 3rd 3D spectrum, the fragment ion and the decomposition product anion exhibited identical dissociation trajectories when they shared the same molecular geometry. After ginsenosides-focused quantitative metabolomics, significant differences occurred for sub-metabolome amongst different parts of notoginseng. The differential ginsenosides were confirmatively identified by applying the correlations between 3×3D-MS/MS spectra and structures. Together, 3×3D-MS/MS spectrum covers all MS/MS behaviors and dramatically facilitates sub-metabolome characterization from both quantitative program development and structural identification.

4.
J Pharm Biomed Anal ; 249: 116391, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116504

RESUMEN

Sinomenii Caulis (SC), a commonly used traditional Chinese medicine for its therapeutic effects on rheumatoid arthritis, contains rich chemical components. At present, most studies mainly focus on sinomenine, with little research on other alkaloids. In this study, a comprehensive profile of compounds in SC extract, and biological samples of rats (including bile, urine, feces, and plasma) after oral administration of SC extract was conducted via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The fragmentation patterns and potential biotransformation pathways of six main types of alkaloids in SC were summarized, and the corresponding characteristic product ions, relative ion intensity, and neutral losses were obtained to achieve rapid classification and identification of complex components of SC from in vitro to in vivo. As a result, a total of 114 alkaloid compounds were identified, including 12 benzyl alkaloids, 4 isoquinolone alkaloids, 32 aporphine alkaloids, 28 protoberberine alkaloids, 34 morphinan alkaloids and 4 organic amine alkaloids. After administration of SC extract to rats, a total of 324 prototypes and metabolites were identified from rat plasma, urine, feces and bile, including 81 aporphines, 95 protoberberines, 117 morphinans and 31 benzylisoquinolines. The main types of metabolites were demethylation, hydrogenation, dehydrogenation, aldehydation, oxidation, methylation, sulfate esterification, glucuronidation, glucose conjugation, glycine conjugation, acetylation, and dihydroxylation. In summary, this integrated strategy provides an additional approach for the incomplete identification caused by compound diversity and low abundance, laying the foundation for the discovery of new bioactive compounds of SC against rheumatoid arthritis.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Animales , Ratas , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Alcaloides/análisis , Alcaloides/química , Alcaloides/farmacocinética , Sinomenium/química , Heces/química , Administración Oral , Bilis/química , Bilis/metabolismo , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Espectrometría de Masas/métodos , Medicina Tradicional China/métodos , Morfinanos/farmacocinética , Morfinanos/metabolismo
5.
Front Pharmacol ; 15: 1425157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161904

RESUMEN

Background: Breast cancer (BC) is one of the most frequently observed malignancies globally, yet drug development for BC has been encountering escalating challenges. Commiphora myrrha is derived from the dried resin of C. myrrha (T. Nees) Engl., and is widely adopted in China for treating BC. However, the anti-BC effect and underlying mechanism of C. myrrha remain largely unclear. Methods: MTT assay, EdU assay, and colony formation were used to determine the effect of C. myrrha n-hexane extract (CMHE) on the proliferation of human BC cells. Cell cycle distribution and apoptosis were assessed via flow cytometry analysis. Moreover, metastatic potential was evaluated using wound-scratch assay and matrigel invasion assay. The 4T1 breast cancer-bearing mouse model was established to evaluate the anti-BC efficacy of CMHE in vivo. RNA-sequencing analysis, quantitative real-time PCR, immunoblotting, immunohistochemical analysis, RNA interference assay, and database analysis were conducted to uncover the underlying mechanism of the anti-BC effect of CMHE. Results: We demonstrated the significant inhibition in the proliferative capability of BC cell lines MDA-MB-231 and MCF-7 by CMHE. Moreover, CMHE-induced G0/G1 phase arrest and apoptosis of the above two BC cell lines were also observed. CMHE dramatically repressed the metastatic potential of these two cells in vitro. Additionally, the administration of CMHE remarkably suppressed tumor growth in 4T1 tumor-bearing mice. No obvious toxic or side effects of CMHE administration in mice were noted. Furthermore, immunohistochemical (IHC) analysis demonstrated that CMHE treatment inhibited the proliferative and metastatic abilities of cancer cells, while also promoting apoptosis in the tumor tissues of mice. Based on RNA sequencing analysis, quantitative real-time PCR, immunoblotting, and IHC assay, the administration of CMHE downregulated Cyclin D1/CDK4-Rb signaling pathway in BC. Furthermore, RNA interference assay and database analysis showed that downregulated Cyclin D1/CDK4 signaling cascade participated in the anti-BC activity of CMHE. Conclusion: CMHE treatment resulted in the suppression of BC cell growth through the stimulation of cell cycle arrest at the G0/G1 phase and the induction of apoptotic cell death via the inhibition of the Cyclin D1/CDK4-Rb pathway, thereby enhancing the anti-BC effect of CMHE. CMHE has potential anti-BC effects, particularly in those harboring aberrant activation of Cyclin D1/CDK4-Rb signaling.

6.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2973-2980, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041157

RESUMEN

This study aims to investigate the effect and mechanism of the EtO Ac extract of Draconis Sanguis(DSE) on improving athero sclerosis in ApoE gene knockout(ApoE~(-/-)) mice. The ApoE~(-/-) mice were randomly divided into five groups: control group, mo delgroup, positive group treated with ezetimibe of 5 mg·kg~(-1)(EG), and low(100 mg·kg~(-1)) and high dose(200 mg·kg~(-1)) groups ofDSE. xcept for the control group, all other groups were fed a high-fat diet and administered drugs for 16 successive weeks. After 16 weeks of Eadministration, the body weight, liver, and epididymal fat mass of the mice were measured; the level of blood lipid and the plaquearea of the aortic outflow tract were detected to evaluate the efficacy of DSE in vivo. In addition, in vitro cultures of human umbilical v ein endothelial cell(HUVEC) were conducted. Oxidative stress of endothelial cells was induced by oxidized low-density lipoprot ein(ox-LDL), and the effects of DSE on oxidative stress-related proteins in endothelial cells were examined. The results sho wedthat both doses of DSE significantly improved the epididymal fat mass and index of ApoE~(-/-) mice with atherosclerosis, lowered thelevels of plasma cholesterol, triglyceride, and non-high density lipoprotein cholesterol, and reduced the plaque area of the aortic ou tflow tract. totIn alvitro experiments confirmed that ox-LDL significantly increased the level of lipid peroxidation marker 4-HNE in HUVECcells, confirming that DSE improved the degree of atherosclerotic lesions in ApoE~(-/-) mice by inhibiting ox-LDL-induced oxidative stress in vascular endothelial cells.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Ratones Noqueados , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Ratones , Apolipoproteínas E/genética , Masculino , Humanos , Estrés Oxidativo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratones Endogámicos C57BL
7.
Anal Bioanal Chem ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990360

RESUMEN

Because of the pathological indication and the physiological functions, bile acids (BAs) have occupied the research hotspot in recent decades. Although extensive efforts have been paid onto BAs sub-metabolome characterization, as the subfamily, BA glucuronides (gluA-BAs) profile is seldom concerned. Here, we made efforts to develop a LC-MS/MS program enabling quantitative gluA-BAs sub-metabolome characterization and to explore the differential species in serum between intrahepatic cholestasis of pregnancy (ICP) patients and healthy subjects. To gain as many authentic gluA-BAs as possible, liver microsomes from humans, rats, and mice were deployed to conjugate glucuronyl group to authentic BAs through in vitro incubation. Eighty gluA-BAs were captured and subsequently served as authentic compounds to correlate MS/MS spectral behaviors to structural features using squared energy-resolved MS program. Optimal collision energy (OCE) of [M-H]->[M-H-176.1]- was jointly administrated by [M-H]- mass and glucuronidation site, and identical exciting energies corresponding to 50% survival rate of 1st-generation fragment ion (EE50) were observed merely when the aglycone of a gluA-BA was consistent with the suspected structure. Through integrating high-resolution m/z, OCE, and EE50 information to identify gluA-BAs in a BAs pool, 97 ones were found and identified, and further, quantitative program was built for all annotated gluA-BAs by assigning OCEs to [M-H]->[M-H-176.1]- ion transitions. Quantitative gluA-BAs sub-metabolome of ICP was different from that of the healthy group. More GCDCA-3-G, GDCA-3-G, TCDCA-7-G, TDCA-3-G, and T-ß-MCA-3-G were distributed in the ICP group. Above all, this study not only offered a promising analytical tool for in-depth gluA-BAs sub-metabolome characterization, but also clarified gluA-BAs allowing the differentiation of ICP and healthy subjects.

8.
Biomed Pharmacother ; 178: 117113, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067164

RESUMEN

The rhizome of Corydalis decumbens is a traditional Chinese medicine commonly utilized in the clinical treatment of acute ischemic stroke. Numerous phytochemical and biological investigations have demonstrated that protoberberine alkaloids from C. decumbens exhibit diverse pharmaceutical activities against various diseases. Sinometumine E (SE), a protoberberine alkaloid isolated from C. decumbens for the first time, is characterized by a complex 6/6/6/6/6/6 hexacyclic skeleton. In the current study, we investigated the protective effects of SE on endothelial cell injury and its angiogenesis effects in zebrafish. The results suggested that SE showed significant anti-ischemic effects on OGD/R-induced HBEC-5i and HUVECs cell ischemia/reperfusion injury model. Furthermore, it promoted angiogenesis in PTK787-induced, MPTP-induced, and atorvastatin-induced vessel injury models of zebrafish, while also suppressing hypoxia-induced locomotor impairment in zebrafish. Transcriptome sequencing analysis provided a sign that SE likely to promotes angiogenesis through the HIF-1/VEGF signaling pathway to exert anti-ischemic effects. Consistently, SE modulated several genes related to HIF-1/VEGF signal pathway, such as hif-1, vegf, vegfr-2, pi3k, erk, akt and plcγ. Molecular docking analysis revealed that VEGFR-2 exhibited high binding affinity with SE, and western blot analysis confirmed that SE treatment enhanced the expression of VEGFR-2. In conclusion, our study profiled the angiogenic activities of SE in vitro and in vivo. The key targets and related pathways involved in anti-ischemic effects of SE, shedding light on the pharmacodynamic components and mechanisms of Corydalis decumbens, and provides valuable insights for identifying effective substances for the treatment of ischemic stroke.


Asunto(s)
Corydalis , Simulación del Acoplamiento Molecular , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Corydalis/química , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Inductores de la Angiogénesis/farmacología , Factor 1 Inducible por Hipoxia/metabolismo , Angiogénesis
9.
Food Chem ; 460(Pt 1): 140459, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059325

RESUMEN

Lignanamides are a class of compounds containing amide functional groups in lignans. These compounds have excellent anti-inflammatory and neuroprotective, which have shown great potential in terms of food additives, medicine and health supplement. We summarized the recent progress of lignanamides, including chemical constituents, extraction methods, biological activities, and synthetic pathways. The structures were classified according to an updated nomenclature system, can be classified into sixteen types and have certain roles in many respects such as anti-inflammatory, anti-cancer, and antioxidative, which may be important source of materials for functional food. The potential and limitations of different extraction method, chromatographic packing, and synthetic pathway are analyzed. Notably, this review provides an overview of synthesis pathways and applications of lignanamides, further research is needed to improve extraction efficiency and synthesis method, especially in a greener way for better application.


Asunto(s)
Antiinflamatorios , Lignanos , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Humanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Estructura Molecular , Amidas/química , Amidas/aislamiento & purificación
10.
Sci Rep ; 14(1): 14307, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906931

RESUMEN

Breast cancer (BC) remains a significant health concern for women globally, prompting the relentless pursuit of novel therapeutic modalities. As a traditional Chinese medicine, Boswellia carterii has been extensively used to treat various cancers, such as BC. However, the anti-BC effect and underlying mechanism of Boswellia carterii remain largely unclear. The aim of this study is to explore the therapeutic effect of Boswellia carterii n-hexane extract (BCHE) against BC as well as its underlying mechanism. The present study showed that BCHE significantly suppressed the viability of human BC cells. Moreover, BCHE exhibited potent anti-BC activity in vivo with no significant toxic effects. Additionally, BCHE induced ferroptosis via increased Transferrin expression and the intracellular accumulation of Fe2+, as well as decreased glutathione peroxidase 4 (GPX4) expression and the upregulation of reactive oxygen species (ROS)-induced lipid peroxidation in BC cells. In vivo experimental results also demonstrated that BCHE effectively induced ferroptosis through GPX4 downregulation and Transferrin upregulation in tumor-bearing mice. Overall, BCHE inhibited the growth of BC cells by inducing ferroptosis mediated by modulating the iron accumulation pathway and the lipid peroxidation pathway. Therefore, BCHE could serve as a potential ferroptosis-targeting drug for treating BC.


Asunto(s)
Boswellia , Neoplasias de la Mama , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Extractos Vegetales , Transferrina , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Animales , Transferrina/metabolismo , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Boswellia/química , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Hexanos/química , Regulación hacia Abajo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C
11.
Chembiochem ; 25(17): e202400269, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923255

RESUMEN

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.


Asunto(s)
Antimaláricos , Piperidinas , Plasmodium falciparum , Quinazolinonas , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Quinazolinonas/química , Quinazolinonas/farmacología , Quinazolinonas/metabolismo , Piperidinas/química , Piperidinas/farmacología , Piperidinas/metabolismo , Antimaláricos/farmacología , Antimaláricos/química , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteómica
12.
J Agric Food Chem ; 72(23): 13297-13307, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830127

RESUMEN

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Thymelaeaceae/enzimología , Thymelaeaceae/química , Thymelaeaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Madera/química , Especificidad por Sustrato , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Metilación , Flavonoides
13.
Phytomedicine ; 130: 155668, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38776739

RESUMEN

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.


Asunto(s)
Aterosclerosis , Antígenos CD36 , Medicamentos Herbarios Chinos , Células Espumosas , Lipoproteínas LDL , Animales , Aterosclerosis/tratamiento farmacológico , Antígenos CD36/metabolismo , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Ratones , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Dieta Alta en Grasa , Ácidos Grasos , Ratones Endogámicos C57BL , Células THP-1 , Placa Aterosclerótica/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Apolipoproteínas E
14.
Acta Pharm Sin B ; 14(5): 2333-2348, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799633

RESUMEN

Enzymatic malonylation of natural glycosides provides a promising alternative method for drug-like malonylated glycosides supply. However, the catalytic potential and structural basis of plant malonyltransferase are far from being fully elucidated. This work identified a new malonyltransferase CtMaT1 from Cistanche tubulosa. It displayed unprecedented mono- and/or di-malonylation activity toward diverse glucosides with different aglycons. A "one-pot" system by CtMaT1 and a malonyl-CoA synthetase was established to biosynthesize nine new malonylated glucosides. Structural investigations revealed that CtMaT1 possesses an adequately spacious acyl-acceptor pocket capable of accommodating diverse glucosides. Additionally, it recognizes malonyl-CoA through strong electrotactic and hydrogen interactions. QM/MM calculation revealed the H167-mediated SN2 reaction mechanism of CtMaT1, while dynamic simulations detected the formation of stable hydrogen bonds between the glucose-6-OH group and H167, resulting in its high malonylation regiospecificity. Calculated energy profiles of two isomeric glycosides highlighted lower reaction energy barriers towards glucoside substrates, emphasizing CtMaT1's preference for glucosides. Furthermore, a mutant CtMaT1H36A with notably increased di-malonylation activity was obtained. The underlying molecular mechanism was illuminated through MM/GBSA binding free energy calculation. This study significantly advances the understanding of plant acyltransferases from both functional and protein structural perspectives, while also providing a versatile tool for enzymatic malonylation applications in pharmacology.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38733887

RESUMEN

Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.


Asunto(s)
Biomarcadores , Cardiomegalia , Metaboloma , Metabolómica , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Metabolómica/métodos , Biomarcadores/metabolismo , Biomarcadores/análisis , Ratas , Masculino , Cardiomegalia/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Metaboloma/fisiología , Cromatografía Liquida/métodos
18.
Phytochemistry ; 224: 114140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750709

RESUMEN

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.


Asunto(s)
Alcaloides , Fritillaria , Raíces de Plantas , Fritillaria/química , Raíces de Plantas/química , Estructura Molecular , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Cevanas/química , Cevanas/farmacología , Cevanas/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Animales , Conformación Molecular , Cristalografía por Rayos X , Línea Celular , Ratas , Esteroides/química , Esteroides/aislamiento & purificación , Esteroides/farmacología , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Modelos Moleculares
19.
Anal Chim Acta ; 1305: 342542, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677836

RESUMEN

Target discovery of natural products is a key step in the development of new drugs, and it is also a difficult speed-limiting step. In this study, a traditional Chinese medicine microspheres (TCM-MPs) target fishing strategy was developed to discover the key drug targets from complex system. The microspheres are composed of Fe3O4 magnetic nanolayer, oleic acid modified layer, the photoaffinity group (4- [3-(Trifluoromethyl)-3H-diazirin-3-yl] benzoic acid, TAD) layer and active small molecule layer from inside to outside. TAD produces highly reactive carbene under ultraviolet light, which can realize the self-assembly and fixation of drug active small molecules with non-selective properties. Here, taking Shenqi Jiangtang Granules (SJG) as an example, the constructed TCM-MPs was used to fish the related proteins of human glomerular mesangial cells (HMCs) lysate. 28 differential proteins were screened. According to the target analysis based on bioinformatics, GNAS was selected as the key target, which participated in insulin secretion and cAMP signaling pathway. To further verify the interaction effect of GNAS and small molecules, a reverse fishing technique was established based on bio-layer interferometry (BLI) coupled with UHPLC-Q/TOF-MS/MS. The results displayed that 26 small molecules may potentially interact with GNAS, and 7 of them were found to have strong binding activity. In vitro experiments for HMCs have shown that 7 active compounds can significantly activate the cAMP pathway by binding to GNAS. The developed TCM-MPs target fishing strategy combined with BLI reverse fishing technology to screen out key proteins that directly interact with active ingredients from complex target protein systems is significant for the discovery of drug targets for complex systems of TCM.


Asunto(s)
Medicina Tradicional China , Microesferas , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Descubrimiento de Drogas , Interferometría/métodos
20.
Eur J Pharmacol ; 972: 176551, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38570082

RESUMEN

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.


Asunto(s)
Artritis Reumatoide , Proliferación Celular , Sinoviocitos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Artritis Reumatoide/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Masculino , Hormonas Tiroideas/metabolismo , Artritis Experimental/patología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Movimiento Celular/efectos de los fármacos , Terapia Molecular Dirigida , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA