Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Rep Prog Phys ; 87(4)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373354

RESUMEN

Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.

2.
ACS Appl Energy Mater ; 5(5): 5804-5810, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647495

RESUMEN

The optical performance of a multilayer antireflective coating incorporating lithography-free nanostructured alumina is assessed. To this end, the performance of single-junction GaInP solar cells and four-junction GaInP/GaAs/GaInNAsSb/GaInNAsSb multijunction solar cells incorporating the nanostructured alumina is compared against the performance of similar solar cells using conventional double-layer antireflective coating. External quantum efficiency measurements for GaInP solar cells with the nanostructured coating demonstrate angle-independent operation, showing only a marginal difference at 60° incident angle. The average reflectance of the nanostructured antireflective coating is ∼3 percentage points smaller than the reflectance of the double-layer antireflective coating within the operation bandwidth of the GaInP solar cell (280-710 nm), which is equivalent of ∼0.2 mA/cm2 higher current density at AM1.5D (1000 W/m2). When used in conjunction with the four-junction solar cell, the nanostructured coating provides ∼0.8 percentage points lower average reflectance over the operation bandwidth from 280 to 1380 nm. However, it is noted that only the reflectance of the bottom GaInNAsSb junction is improved in comparison to the planar coating. In this respect, since in such solar cells the bottom junction typically is limiting the operation, the nanostructured coating would enable increasing the current density ∼0.6 mA/cm2 in comparison to the standard two-layer coating. The light-biased current-voltage measurements show that the fabrication process for the nanostructured coating does not induce notable recombination or loss mechanisms compared to the established deposition methods. Angle-dependent external quantum efficiency measurements incline that the nanostructured coating excels in oblique angles, and due to low reflectance at a 1000-1800 nm wavelength range, it is very promising for next-generation broadband multijunction solar cells with four or more junctions.

3.
Opt Quantum Electron ; 53(4): 205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776589

RESUMEN

A numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model. The grid spacing under various operating conditions was assessed for two similar p-n and n-p structures. The key target was finding optimal configuration to achieve the highest conversion efficiency at different temperatures and illumination profiles. The results show that the n-p structure yields wider optimal spacing range and the highest output power. Also, it was found that temperature increase and illumination nonuniformity results in narrower optimal spacing for both structure architectures. Analyzing the current-voltage characteristics, reveals that resistive losses are the dominant loss mechanism bringing restriction in terms of ability to handle nonuniform illumination.

4.
ACS Omega ; 6(41): 27501-27509, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693171

RESUMEN

Titanium dioxide (TiO2) can protect photoelectrochemical (PEC) devices from corrosion, but the fabrication of high-quality TiO2 coatings providing long-term stability has remained challenging. Here, we compare the influence of Si wafer cleaning and postdeposition annealing temperature on the performance of TiO2/n+-Si photoanodes grown by atomic layer deposition (ALD) using tetrakis(dimethylamido)titanium (TDMAT) and H2O as precursors at a growth temperature of 100 °C. We show that removal of native Si oxide before ALD does not improve the TiO2 coating performance under alkaline PEC water splitting conditions if excessive postdeposition annealing is needed to induce crystallization. The as-deposited TiO2 coatings were amorphous and subject to photocorrosion. However, the TiO2 coatings were found to be stable over a time period of 10 h after heat treatment at 400 °C that induced crystallization of amorphous TiO2 into anatase TiO2. No interfacial Si oxide formed during the ALD growth, but during the heat treatment, the thickness of interfacial Si oxide increased to 1.8 nm for all of the samples. Increasing the ALD growth temperature to 150 °C enabled crystallization at 300 °C, which resulted in reduced growth of interfacial Si oxide followed by a 70 mV improvement in the photocurrent onset potential.

5.
Phys Chem Chem Phys ; 23(32): 17672-17682, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34373878

RESUMEN

Polycrystalline titanium dioxide thin films are routinely used in a broad range of applications where charge carrier lifetime is essential for their performance but the effects of the fabrication method are rarely considered. Here we compare three popular deposition methods, atomic layer deposition (ALD), ion beam sputtering (IBS), and spray pyrolysis deposition (SPD). In all three cases, 30 nm thin films of TiO2 are prepared, and the as-deposited films show no defined crystal structure and can be classified as amorphous films. Heat treatment (HT) of the films converts all of them to polycrystalline anatase TiO2 as revealed by XRD measurements. A photophysical study was carried out by pico- to nano-second transient absorption pump-probe spectroscopy in transmittance and reflectance modes which allows taking into account the effects due to the photoinduced refractive index changes. This study shows that the HT increases the lifetime of the photo-carriers gradually to a nanosecond time domain (approx. 4 ns) as compared to a few picoseconds of the as-deposited samples. The photo-carrier dynamics of the samples become very similar after heat-treatment, though the topographical features and texture of the films observed with AFM and XRD are quite different. The measured transient absorption spectra of the samples also indicate that the photo-carrier relaxation pathway involves electron and hole trap states with the longest-lived being the hole traps. To evaluate the photoactivity of thin films, methylene blue (MB) photodegradation was tested for all the as-deposited and HT samples and the results showed a 20% higher degradation rate for the IBS HT sample due to the more textured surface.

6.
Nanotechnology ; 32(21)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33596557

RESUMEN

A new method for modification of planar multilayer structures to create nanostructured aluminum oxide anti-reflection coatings is reported. The method is non-toxic and low-cost, being based on treatment of the coating with heated de-ionized water after the deposition of aluminum oxide. The results show that the method provides a viable alternative for attaining a low reflectance ARC. In particular, a low average reflectivity of ∼3.3% is demonstrated in a broadband spectrum extending from 400 nm to 2000 nm for ARCs deposited on GaInP solar-cells, the typical material used as top-junction in solar cell tandem architectures. Moreover, the process is compatible with volume manufacturing technologies used in photovoltaics, such as ion beam sputtering and electron beam evaporation.

7.
Nanotechnology ; 32(13): 130001, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33276349

RESUMEN

Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

8.
Nanomaterials (Basel) ; 10(8)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32784961

RESUMEN

Titanium dioxide (TiO2) thin films are widely employed for photocatalytic and photovoltaic applications where the long lifetime of charge carriers is a paramount requirement for the device efficiency. To ensure the long lifetime, a high temperature treatment is used which restricts the applicability of TiO2 in devices incorporating organic or polymer components. In this study, we exploited low temperature (100-150 °C) atomic layer deposition (ALD) of 30 nm TiO2 thin films from tetrakis(dimethylamido)titanium. The deposition was followed by a heat treatment in air to find the minimum temperature requirements for the film fabrication without compromising the carrier lifetime. Femto-to nanosecond transient absorption spectroscopy was used to determine the lifetimes, and grazing incidence X-ray diffraction was employed for structural analysis. The optimal result was obtained for the TiO2 thin films grown at 150 °C and heat-treated at as low as 300 °C. The deposited thin films were amorphous and crystallized into anatase phase upon heat treatment at 300-500 °C. The average carrier lifetime for amorphous TiO2 is few picoseconds but increases to >400 ps upon crystallization at 500 °C. The samples deposited at 100 °C were also crystallized as anatase but the carrier lifetime was <100 ps.

9.
Appl Opt ; 59(21): 6304-6308, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32749293

RESUMEN

Quantum dot solar cells are promising for next-generation photovoltaics owing to their potential for improved device efficiency related to bandgap tailoring and quantum confinement of charge carriers. Yet implementing effective photon management to increase the absorptivity of the quantum dots is instrumental. To this end, the performance of thin-film InAs/GaAs quantum dot solar cells with planar and structured back reflectors is reported. The experimental thin-film solar cells with planar reflectors exhibited a bandgap-voltage offset of 0.3 V with an open circuit voltage of 0.884 V, which is one of the highest values reported for quantum dot solar cells grown by molecular beam epitaxy to our knowledge. Using measured external quantum efficiency and current-voltage characteristics, we parametrize a simulation model that was used to design an advanced reflector with diffractive pyramidal gratings revealing a 12-fold increase of the photocurrent generation in the quantum dot layers.

10.
Opt Lett ; 44(15): 3669-3672, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368939

RESUMEN

We experimentally demonstrate the lasing action of a new nanolaser design with a tunnel junction. By using a heavily doped tunnel junction for hole injection, we can replace the p-type contact material of a conventional nanolaser diode with a low-resistance n-type contact layer. This leads to a significant reduction of the device resistance and lowers the threshold voltage from 5 V to around 0.95 V at 77 K. The lasing behavior is verified by the light output versus the injection current (L-I) characterization and second-order coherence function measurements. Because of less Joule heating during current injection, the nanolaser can be operated at temperatures as high as 180 K under CW pumping. The incorporation of heavily doped tunnel junctions may pave the way for other nanoscale cavity design for improved heat management.

11.
Opt Lett ; 44(5): 1146-1149, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821734

RESUMEN

We studied and compared single-side pumping (SSP) and double-side pumping (DSP) of a semiconductor membrane external-cavity surface-emitting laser (MECSEL). The MECSEL-active region was based on an AlGaAs quantum well structure embedded between two silicon carbide (SiC) wafer pieces that were used as transparent intra-cavity (IC) heat spreaders creating a symmetrical cooling environment. The gain structure targeted emission at 780 nm, a wavelength region that is important for many applications, and where the development of high-brightness high-power laser sources is gaining more momentum. By DSP at 20°C heat sink temperature, we could reduce the laser threshold from 0.79 to 0.69 W of absorbed pump power, while the maximum output power was increased from 3.13 to 3.22 W. The differential efficiency was improved from 31.9% to 34.4%, which represents a record value for SiC-cooled vertically emitting semiconductor lasers. The improvements are enabled by a reduced thermal resistance of the gain element by 9% compared to SSP. The beam quality was measured to be M2<1.09. Finally, we demonstrate a maximum tuning range from 767 to 811 nm. This wavelength range was not addressed by any MECSEL or vertical external-cavity surface-emitting laser device before and extends the available wavelengths for semiconductor based high-quality beam and high-power laser sources to a wavelength window relevant for quantum technology, spectroscopy, or medicine.

12.
ACS Appl Mater Interfaces ; 10(51): 44932-44940, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30508372

RESUMEN

InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown Al2O3/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis. The chemical environment and core-level shifts are clarified for well-embedded InAs interfaces (12 nm Al2O3) to avoid, in particular, effects of a significant potential change at the vacuum-solid interface. High-resolution As 3d spectra reveal that the Al2O3/InAs interface, which was sputter-cleaned before ALD, includes +1.0 eV shift, whereas As 3d of the preoxidized (3 × 1)-O interface exhibits a shift of -0.51 eV. The measurements also indicate that an As2O3 type structure is not crucial in controlling defect densities. Regarding In 4d measurements, the sputtered InAs interface includes only a +0.29 eV shift, while the In 4d shift around -0.3 eV is found to be inherent for the crystalline oxidized interfaces. Thus, the negative shifts, which have been usually associated with dangling bonds, are not necessarily an indication of such point defects as previously expected. In contrast, the negative shifts can arise from bonding with O atoms. Therefore, specific care should be directed in determining the bulk-component positions in photoelectron studies. Finally, we present an approach to transfer the InAs oxidation results to a device process of high electron mobility transistors (HEMT) using an As-rich III-V surface and In deposition. The approach is found to decrease a gate leakage current of HEMT without losing the gate controllability.

13.
Opt Express ; 26(6): A331-A340, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609286

RESUMEN

We report on the fabrication of diffraction gratings for application as back contact reflectors. The gratings are designed for thin-film solar cells incorporating absorbers with bandgap slightly lower than GaAs, i.e. InAs quantum dot or GaInNAs solar cells. Light trapping in the solar cells enables the increase of the absorption leading to higher short circuit current densities and higher efficiencies. We study metal/polymer back reflectors with half-sphere, blazed, and pyramid gratings, which were fabricated either by photolithography or by nanoimprint lithography. The gratings are compared in terms of the total and the specular reflectance, which determine their diffraction capabilities, i.e. the feature responsible for increasing the absorption. The pyramid grating showed the highest diffuse reflection of light compared to the half-sphere structure and the blazed grating. The diffraction efficiency measurements were in agreement with the numerical simulations. The validated model enables designing such metal/polymer back reflectors for other type of solar cells by refining the optimal dimensions of the gratings for different wavelength ranges.

14.
Opt Lett ; 43(7): 1578-1581, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601034

RESUMEN

An optically pumped vertical-external-cavity surface-emitting laser (VECSEL) for direct emission in the 740-790 nm wavelength region is reported. The gain structure is based on 12 AlGaAs quantum wells. We demonstrate wavelength tuning between 747 nm and 788 nm and free-running operation with a maximum power of 4.24 W (pump power limited) for a heat sink temperature of 14°C. This laser system addresses a spectral gap not currently covered by VECSEL technology and represents the most powerful VECSEL reported within the 7XX-nm wavelength region.

15.
Nanoscale Res Lett ; 9(1): 80, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533702

RESUMEN

We report a time-resolved photoluminescence study for GaInNAs and GaNAsSb p-i-n bulk solar cells grown on GaAs(100). In particular, we studied the extent to which the carrier lifetime decreases with the increase of N content. Rapid thermal annealing proved to significantly increase the decay times by a factor of 10 to 12 times, for both GaInNAs and GaNAsSb heterostructures, while for the 1-eV bandgap GaNAsSb structure, grown at the same growth conditions as the GaInNAs, the photoluminescence decay time remained slightly below 100 ps after annealing; the approximately 1.15-eV GaInNAs p-i-n solar cell exhibited a lifetime as long as 900 ps. PACS: 78.47.D; 78.55.Cr; 88.40.hj.

16.
Nanoscale Res Lett ; 9(1): 61, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24498981

RESUMEN

We have measured the characteristics of molecular beam epitaxy grown GaInNAsSb solar cells with different bandgaps using AM1.5G real sun illumination. Based on the solar cell diode characteristics and known parameters for state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge cells, we have calculated the realistic potential efficiency increase for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge multijunction solar cells for different current matching conditions. The analyses reveal that realistic GaInNAsSb solar cell parameters, render possible an extraction efficiency of over 36% at 1-sun AM1.5D illumination. PACS: 88.40.hj; 88.40.jm; 88.40.jp; 81.15.Hi.

17.
Nanoscale Res Lett ; 5(12): 1892-6, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21170401

RESUMEN

We report the use of partially relaxed tensile as well as compressively strained GaInP layers for lateral ordering of InAs quantum dots with the aid of misfit dislocation networks. The strained layers and the InAs QDs were characterized by means of atomic force microscopy, scanning electron microscopy, and X-ray reciprocal space mapping. The QD-ordering properties of compressive GaInP are found to be very similar with respect to the use of compressive GaInAs, while a significantly stronger ordering of QDs was observed on tensile GaInP. Furthermore, we observed a change of the major type of dislocation in GaInP layers as the growth temperature was modified.

18.
Nat Nanotechnol ; 4(5): 287-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19421212

RESUMEN

The increase in semiconductor conductivity that occurs when a hard indenter is pressed into its surface has been recognized for years, and nanoindentation experiments have provided numerous insights into the mechanical properties of materials. In particular, such experiments have revealed so called pop-in events, where the indenter suddenly enters deeper into the material without any additional force being applied; these mark the onset of the elastic-plastic transition. Here, we report the observation of a current spike--a sharp increase in electrical current followed by immediate decay to zero at the end of the elastic deformation--during the nanoscale deformation of gallium arsenide. Such a spike has not been seen in previous nanoindentation experiments on semiconductors, and our results, supported by ab initio calculations, suggest a common origin for the electrical and mechanical responses of nanodeformed gallium arsenide. This leads us to the conclusion that a phase transition is the fundamental cause of nanoscale plasticity in gallium arsenide, and the discovery calls for a revision of the current dislocation-based understanding of nanoscale plasticity.


Asunto(s)
Arsenicales/química , Galio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Módulo de Elasticidad , Campos Electromagnéticos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Estrés Mecánico , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA