RESUMEN
This study aims to investigate the in vitro effects of nanoparticles (NPs) produced during the selective laser melting (SLM) of 316â¯L stainless steel metal powder on the immune response in a human blood model. Experimental data did not reveal effect on viability of 316â¯L NPs for the tested doses. Functional immune assays showed a significant immunosuppressive effect of NPs. There was moderate stimulation (117%) of monocyte phagocytic activity without significant changes in phagocytic activity and respiratory burst of granulocytes. A significant dose-dependent increase in the levels of the pro-inflammatory cytokine TNF-a was found in blood cultures treated with NPs. On the contrary, IL-8 chemokine levels were significantly suppressed. The levels of the pro-inflammatory cytokine IL-6 were reduced by only a single concentration of NPs. These new findings can minimise potential health risks and indicate the need for more research in this area.
Asunto(s)
Nanopartículas , Acero Inoxidable , Humanos , Acero Inoxidable/farmacología , Metales , Nanopartículas/toxicidad , Citocinas , Impresión TridimensionalRESUMEN
Oxidative stress and sterile inflammation play roles in the induction and maintenance of metabolic syndrome (MetS). This study cohort included 170 females aged 40 to 45 years who were categorized according to the presentation of MetS components (e.g., central obesity, insulin resistance, atherogenic dyslipidemia, and elevated systolic blood pressure) as controls not presenting a single component (n = 43), those with pre-MetS displaying one to two components (n = 70), and females manifesting MetS, e.g., ≥3 components (n = 53). We analyzed the trends of seventeen oxidative and nine inflammatory status markers across three clinical categories. A multivariate regression of selected oxidative status and inflammatory markers on the components of MetS was performed. Markers of oxidative damage (malondialdehyde and advanced-glycation-end-products-associated fluorescence of plasma) were similar across the groups. Healthy controls displayed lower uricemia and higher bilirubinemia than females with MetS; and lower leukocyte counts, concentrations of C-reactive protein, interleukine-6, and higher levels of carotenoids/lipids and soluble receptors for advanced glycation end-products than those with pre-MetS and MetS. In multivariate regression models, levels of C-reactive protein, uric acid, and interleukine-6 were consistently associated with MetS components, although the impacts of single markers differed. Our data suggest that a proinflammatory imbalance precedes the manifestation of MetS, while an imbalance of oxidative status accompanies overt MetS. Further studies are needed to elucidate whether determining markers beyond traditional ones could help improve the prognosis of subjects at an early stage of MetS.
RESUMEN
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
RESUMEN
As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated. The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay). Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively. Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.
Asunto(s)
Antioxidantes , Exposición Profesional , Humanos , Monitoreo Biológico , Peróxido de Hidrógeno , Daño del ADN , Reparación del ADN , Ensayo Cometa , Exposición Profesional/efectos adversos , Aberraciones Cromosómicas , ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos XRESUMEN
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Asunto(s)
Cobre , Nanopartículas , Inmunidad Adaptativa , Animales , Antioxidantes , Cobre/toxicidad , Citocinas , Ratones , Nanopartículas/toxicidad , ÓxidosRESUMEN
Despite the obvious advantages of gold nanoparticles for biomedical applications, controversial and incomplete toxicological data hamper their widespread use. Here, we present the results from an in vivo toxicity study using gold nanoparticles coated with polyethylene glycol (PEG-AuNPs). The pharmacokinetics and biodistribution of PEG-AuNPs were examined in the rat's liver, lung, spleen, and kidney after a single i.v. injection (0.7 mg/kg) at different time intervals. PEG-AuNPs had a relatively long blood circulation time and accumulated primarily in the liver and spleen, where they remained for up to 28 days after administration. Increased cytoplasmic vacuolation in hepatocytes 24 h and 7 days after PEG-AuNPs exposure and apoptotic-like cells in white splenic pulp 24 h after administration has been detected, however, 28 days post-exposure were no longer observed. In contrast, at this time point, we identified significant changes in lipid metabolism, altered levels of liver injury markers, and elevated monocyte count, but without marked biological relevance. In blood cells, no DNA damage was present in any of the studied time intervals, with the exception of DNA breakage transiently detected in primary kidney cells 4 h post-injection. Our results indicate that the tissue accumulation of PEG-AuNPs might result in late toxic effects.
RESUMEN
In the original publication, the starting point in time for the three feeding trials.
RESUMEN
Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82â¯nm, mass concentration: 31.7⯵g CdO/m3, total deposited dose: 0.195⯵g CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-ß2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.
Asunto(s)
Compuestos de Cadmio/toxicidad , Fibrosis/inducido químicamente , Inmunidad Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Óxidos/toxicidad , Tibia/efectos de los fármacos , Administración por Inhalación , Animales , Compuestos de Cadmio/administración & dosificación , Citocinas/metabolismo , Femenino , Intestinos/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Ganglios Linfáticos/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Ratones Endogámicos ICR , Óxidos/administración & dosificación , Bazo/efectos de los fármacos , Timo/efectos de los fármacosRESUMEN
In 2012, a controversial study on the long-term toxicity of a Roundup herbicide and the glyphosate-tolerant genetically modified (GM) maize NK603 was published. The EC-funded G-TwYST research consortium tested the potential subchronic and chronic toxicity as well as the carcinogenicity of the glyphosate-resistant genetically modified maize NK603 by performing two 90-day feeding trials, one with GM maize inclusion rates of 11 and 33% and one with inclusion rates of up to 50%, as well as a 2-year feeding trial with inclusion rates of 11 and 33% in male and female Wistar Han RCC rats by taking into account OECD Guidelines for the testing of chemicals and EFSA recommendations on the safety testing of whole-food/feed in laboratory animals. In all three trials, the NK603 maize, untreated and treated once with Roundup during its cultivation, and the conventional counterpart were tested. Differences between each test group and the control group were evaluated. Equivalence was assessed by comparing the observed difference to differences between non-GM reference groups in previous studies. In case of significant differences, whether the effects were dose-related and/or accompanied by changes in related parameters including histopathological findings was evaluated. It is concluded that no adverse effects related to the feeding of the NK603 maize cultivated with or without Roundup for up to 2 years were observed. Based on the outcome of the subchronic and combined chronic toxicity/carcinogenicity studies, recommendations on the scientific justification and added value of long-term feeding trials in the GM plant risk assessment process are presented.
Asunto(s)
Alimentación Animal/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Alimentos Modificados Genéticamente , Glicina/análogos & derivados , Herbicidas/toxicidad , Plantas Modificadas Genéticamente/efectos de los fármacos , Zea mays , Animales , Pruebas de Carcinogenicidad , Resistencia a Medicamentos/genética , Femenino , Glicina/toxicidad , Masculino , Plantas Modificadas Genéticamente/genética , Ratas Wistar , Pruebas de Toxicidad Crónica , Pruebas de Toxicidad Subcrónica , Zea mays/efectos de los fármacos , Zea mays/genética , GlifosatoRESUMEN
Safety assessments guard against unintended effects for human health and the environment. When new products are compared with accepted reference products by broad arrays of measurements, statistical analyses are usually summarised by significance tests or confidence intervals per endpoint. The traditional approach is to test for statistical significance of differences. However, absence or presence of significant differences is not a statement about safety. Equivalence limits are essential for safety assessment. We propose graphs to present the results of equivalence tests over the array of endpoints. It is argued that plots of the equivalence limit scaled difference (ELSD) are preferable over plots of the standardised effect size (SES) used previously for similar assessments. The ELSD method can be used either with externally specified equivalence limits or with equivalence limits estimated from (historical) data. The method is illustrated with two examples: first, environmental safety of MON810 Bt maize was assessed using field trial count data of arthropods; second, human safety of herbicide tolerant NK603 maize was assessed using haematological, biochemical and organ weight data from a 90-day rat feeding study. All assessed endpoints were classified in EFSA equivalence categories I or II, implying full equivalence or equivalence more likely than not.
Asunto(s)
Ambiente , Inocuidad de los Alimentos/métodos , Plantas Modificadas Genéticamente/efectos adversos , Estadística como Asunto/métodos , Alimentación Animal/efectos adversos , Animales , Artrópodos , Femenino , Humanos , Ratas , Medición de Riesgo/métodos , Zea maysRESUMEN
Innovative nanotechnology aims to develop particles that are small, monodisperse, smart, and do not cause unintentional side effects. Uniform magnetic Fe3O4 nanoparticles (12 nm in size) were prepared by thermal decomposition of iron(III) oleate. To make them colloidally stable and dispersible in water and cell culture medium, they were modified with phosphonic acid- (PA) and hydroxamic acid (HA)-terminated poly(ethylene glycol) yielding PA-PEG@Fe3O4 and HA-PEG@Fe3O4 nanoparticles; conventional γ-Fe2O3 particles were prepared as a control. Advanced techniques were used to evaluate the properties and safety of the particles. Completeness of the nanoparticle coating was tested by real-time polymerase chain reaction. Interaction of the particles with primary human peripheral blood cells, cellular uptake, cytotoxicity, and immunotoxicity were also investigated. Amount of internalized iron in peripheral blood mononuclear cells was 72, 38, and 25 pg Fe/cell for HA-PEG@Fe3O4, γ-Fe2O3, and PA-PEG@Fe3O4, respectively. Nanoparticles were localized within the cytoplasm and in the extracellular space. No cytotoxic effect of both PEGylated nanoparticles was observed (0.12-75 µg/cm2) after 24 and 72-h incubation. Moreover, no suppressive effect was found on the proliferative activity of T-lymphocytes and T-dependent B-cell response, phagocytic activity of monocytes and granulocytes, and respiratory burst of phagocytes. Similarly, no cytotoxic effect of γ-Fe2O3 particles was observed. However, they suppressed the proliferative activity of T-lymphocytes (75 µg/cm2, 72 h) and also decreased the phagocytic activity of monocytes (15 µg/cm2, 24 h; 3-75 µg/cm2, 72 h). We thus show that newly developed particles have great potential especially in cancer diagnostics and therapy.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Nanomedicina/métodos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Cultivadas , Citocinas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/patología , Nanopartículas de Magnetita/química , Tamaño de la Partícula , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Ácidos Fosforosos/química , Polietilenglicoles/química , Estallido Respiratorio/efectos de los fármacos , Estallido Respiratorio/inmunología , Propiedades de SuperficieRESUMEN
PURPOSE: To determine the DNA protective effects of a standard coffee beverage in comparison to water consumption. METHODS: The single-blind, randomised controlled study with parallel design included healthy women (n = 50) and men (n = 50) recruited from the general Central European population. The subjects were randomised in a coffee and a control group, with stratification for sex and body mass index. The study comprised two periods of 4 weeks: a preconditioning period, with daily consumption of at least 500 ml water but no coffee, nor tea, nor any other caffeine-containing product. During the subsequent intervention period the coffee group consumed 500 ml of freshly brewed dark roast coffee blend per day, the control group consumed water instead. On the last day of each period, blood was drawn and analysed by comet assay (single-cell gel electrophoresis) to assess the level of DNA damage (strand breakage). RESULTS: At the end of the intervention period the mean level of DNA strand breaks in the coffee group has decreased in comparison to the control group [difference in means 0.23% TI (tail intensity), p = 0.028]. The mean change from baseline (delta value) was - 23% in the coffee group (p = 0.0012). Effects of coffee intake were similar for men and women. During intervention, neither group showed any significant change in body weight or calorie intake. CONCLUSIONS: Our results indicate that regular consumption of a dark roast coffee blend has a beneficial protective effect on human DNA integrity in both, men and women.
Asunto(s)
Café , Daño del ADN/efectos de los fármacos , Adulto , Culinaria , Europa (Continente) , Femenino , Calor , Humanos , Masculino , Método Simple CiegoRESUMEN
The genetically modified maize event MON810 expresses a Bacillus thuringiensis-derived gene, which encodes the insecticidal protein Cry1Ab to control some lepidopteran insect pests such as the European corn borer. It has been claimed that the immune system may be affected following the oral/intragastric administration of the MON810 maize in various different animal species. In the frame of the EU-funded project GRACE, two 90-day feeding trials, the so-called studies D and E, were performed to analyze the humoral and cellular immune responses of male and female Wistar Han RCC rats fed the MON810 maize. A MON810 maize variety of Monsanto was used in the study D and a MON810 maize variety of Pioneer Hi-Bred was used in the study E. The total as well as the maize protein- and Cry1Ab-serum-specific IgG, IgM, IgA and IgE levels, the proliferative activity of the lymphocytes, the phagocytic activity of the granulocytes and monocytes, the respiratory burst of the phagocytes, a phenotypic analysis of spleen, thymus and lymph node cells as well as the in vitro production of cytokines by spleen cells were analyzed. No specific Cry1Ab immune response was observed in MON810 rats, and anti-maize protein antibody responses were similar in MON810 and control rats. Single parameters were sporadically altered in rats fed the MON810 maize when compared to control rats, but these alterations are considered to be of no immunotoxicological significance.
Asunto(s)
Alimentación Animal/toxicidad , Alimentos Modificados Genéticamente/toxicidad , Inmunidad Celular , Inmunidad Humoral , Plantas Modificadas Genéticamente/toxicidad , Zea mays/genética , Alimentación Animal/normas , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/inmunología , Seguridad de Productos para el Consumidor , Endotoxinas/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alimentos Modificados Genéticamente/normas , Proteínas Hemolisinas/inmunología , Inmunoglobulinas/sangre , Plantas Modificadas Genéticamente/inmunología , Ratas Wistar , Pruebas de Toxicidad CrónicaRESUMEN
The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity.
Asunto(s)
Daño del ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Nanoestructuras/toxicidad , Animales , Epigenómica , Humanos , Nanoestructuras/química , Estrés Oxidativo/efectos de los fármacosRESUMEN
The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.
Asunto(s)
Linfocitos B/fisiología , Obesidad/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Posmenopausia/fisiología , Linfocitos T/fisiología , Adulto , Anciano , Biomarcadores , Densidad Ósea/fisiología , Femenino , Humanos , Persona de Mediana EdadRESUMEN
Sodium fluoride-based ß-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.
RESUMEN
The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure.
Asunto(s)
Alimentación Animal , Alimentos Modificados Genéticamente/toxicidad , Estado de Salud , Plantas Modificadas Genéticamente/toxicidad , Zea mays/genética , Alimentación Animal/normas , Alimentación Animal/toxicidad , Animales , Femenino , Masculino , Ratas Endogámicas , Medición de Riesgo , Pruebas de Toxicidad CrónicaAsunto(s)
Alimentación Animal/toxicidad , Conducta Animal , Ingestión de Alimentos , Inocuidad de los Alimentos , Alimentos Modificados Genéticamente/toxicidad , Plantas Modificadas Genéticamente/toxicidad , Pruebas de Toxicidad Crónica/normas , Animales , Humanos , Ratones , Control de Calidad , Ratas , Medición de Riesgo , Factores de TiempoRESUMEN
Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).
Asunto(s)
Vehículos a Motor , Nanopartículas/toxicidad , Material Particulado/toxicidad , Adulto , Citocinesis , Femenino , Humanos , Linfocitos/efectos de los fármacos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/análisis , Nanopartículas/ultraestructura , Material Particulado/análisis , Proyectos Piloto , Espectrometría RamanRESUMEN
AIM: To determine cytotoxicity and effect of silica-coated magnetic nanoparticles (MNPs) on immune response, in particular lymphocyte proliferative activity, phagocytic activity, and leukocyte respiratory burst and in vitro production of interleukin-6 (IL-6) and 8 (IL-8), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and granulocyte macrophage colony stimulating factor (GM-CSF). METHODS: Maghemite was prepared by coprecipitation of iron salts with ammonia, oxidation with NaOCl and modified by tetramethyl orthosilicate and aminosilanes. Particles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Cytotoxicity and lymphocyte proliferative activity were assessed using [3H]-thymidine incorporation into DNA of proliferating human peripheral blood cells. Phagocytic activity and leukocyte respiratory burst were measured by flow cytometry; cytokine levels in cell supernatants were determined by ELISA. RESULTS: γ-Fe2O3&SiO2-NH2 MNPs were 13 nm in size. According to TEM, they were localized in the cell cytoplasm and extracellular space. Neither cytotoxic effect nor significant differences in T-lymphocyte and T-dependent B-cell proliferative response were found at particle concentrations 0.12-75 µg/cm2 after 24, 48, and 72 h incubation. Significantly increased production of IL-6 and 8, and GM-CSF cytokines was observed in the cells treated with 3, 15, and 75 µg of particles/cm2 for 48 h and stimulated with pokeweed mitogen (PHA). No significant changes in TNF-α and IFN-γ production were observed. MNPs did not affect phagocytic activity of monocytes and granulocytes when added to cells for 24 and 48 h. Phagocytic respiratory burst was significantly enhanced in the cultures exposed to 75 µg MNPs/cm2 for 48 h. CONCLUSIONS: The cytotoxicity and in vitro immunotoxicity were found to be minimal in the newly developed porous core-shell γ-Fe2O3&SiO2-NH2 magnetic nanoparticles.