Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631268

RESUMEN

As an alternative to the traditional polymeric-based system, it is now possible to use an in situ forming system that is based on small molecules. Borneol was used as matrix formation in this study. While triacetin was incorporated into the formulation for prolonging the drug release. The objective of this study is to understand the initial period of the solvent exchange mechanism at the molecular level, which would provide a basis for explaining the matrix formation and drug release phenomena. The evaluation of basic physical properties, matrix formation, in vitro drug release, and molecular dynamics (MD) simulation of borneol-based in situ forming matrixes (ISM) was conducted in this study. The proportion of triacetin was found to determine the increase in density and viscosity. The density value was found to be related to viscosity which could be used for the purpose of prediction. Slow self-assembly of ISM upon the addition of triacetin was associated with higher viscosity and lower surface tension. This phenomenon enabled the regulation of solvent exchange and led to sustaining the drug release. In MD simulation using AMBER Tools, the free movement of the drug and the rapid approach to equilibrium of both solvent and water molecule in a solvent exchange mechanism in borneol-free ISM was observed, supporting that sustained release would not occur. Water infiltration was slowed down and NMP movement was restricted by the addition of borneol and triacetin. In addition, the increased proportion of triacetin promoted the diminished down of all substances' movement because of the viscosity. The diffusion constant of relevant molecules decreased with the addition of borneol and/or triacetin. Although the addition of triacetin tended to slow down the solvent exchange and molecular movement from computation modelling results, it may not guarantee to imply the best drug release control. The Low triacetin-incorporated (5%) borneol-based ISM showed the highest ability to sustain the drug release due to its self-assembly and has proper solvent exchange. MD simulation addressed the details of the mechanism at the beginning of the process. Therefore, both MD and classical methods contribute to a clearer understanding of solvent exchange from the molecular to macroscopic level and from the first nanosecond of the formulation contact with water to the 10-day of drug release. These would be beneficial for subsequent research and development efforts in small molecule-based in situ forming systems.

2.
Gels ; 9(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504434

RESUMEN

Borneol has been successfully employed as a gelling agent for in situ forming gel (ISG). While 40% borneol can regulate drug release, there is interest in novel approaches to achieve extended drug release, particularly through the incorporation of hydrophobic substances. Herein, triacetin was selected as a hydrophobic additive solvent for doxycycline hyclate (Dox)-loaded 40% borneol-based ISGs in N-methyl-2-pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), which were subsequently evaluated in terms of their physicochemical properties, gel formation morphology, water sensitivity, drug release, and antimicrobial activities. ISG density and viscosity gradually decreased with the triacetin proportion to a viscosity of <12 cPs and slightly influenced the surface tension (33.14-44.33 mN/m). The low expelled force values (1.59-2.39 N) indicated the convenience of injection. All of the prepared ISGs exhibited favorable wettability and plastic deformation. Higher gel firmness from ISG prepared using NMP as a solvent contributed to the ability of more efficient controlled drug release. High triacetin (25%)-loaded ISG retarded solvent diffusion and gel formation, but diminished gel firmness and water sensitivity. ISG containing 5% triacetin efficiently prolonged Dox release up to 10 days with Fickian diffusion and presented effective antimicrobial activities against periodontitis pathogens such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Therefore, the Dox-loaded 40% borneol-based ISG with 5% triacetin is a potential effective local ISG for periodontitis treatment.

3.
Gels ; 9(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37504462

RESUMEN

Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as a solvent for loading levofloxacin HCl for periodontitis treatment. The influence of Eudragit concentration was investigated in terms of apparent viscosity, rheological behavior, injectability, gel-forming behavior, and mechanical properties. Eudragit L-based formulation presented less viscosity, was easier to inject, and could form more gel than Eudragit S-based ISG. Levofloxacin HCl-loading diminished the viscosity of Eudragit L-based formulation but did not significantly change the gel formation ability. Higher polymer loading increased viscosity, force-work of injectability, and hardness. SEM photographs and µCT images revealed their scaffold formation, which had a denser topographic structure and less porosity attained owing to higher polymer loading and less in vitro degradation. By tracking with fluorescence dyes, the interface interaction study revealed crucial information such as solvent movement ability and matrix formation of ISG. They prolonged the drug release for 14 days with fickian drug diffusion kinetics and increased the release amount above the MIC against test microbes. The 1% levofloxacin HCl and 15% Eudragit L dissolved in monopropylene glycol (LLM15) was a promising ISG because of its appropriate viscosity (3674.54 ± 188.03 cP) with Newtonian flow, acceptable gel formation and injectability (21.08 ± 1.38 N), hardness (33.81 ± 2.3 N) and prolonged drug release with efficient antimicrobial activities against S. aureus (ATCC 6538, 6532, and 25923), methicillin-resistant S. aureus (MRSA) (S. aureus ATCC 4430), E. coli ATCC 8739, C. albicans ATCC 10231, P. gingivalis ATCC 33277, and A. actinomycetemcomitans ATCC 29522; thus, it is the potential ISG formulation for periodontitis treatment by localized periodontal pocket injection.

4.
Gels ; 9(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233003

RESUMEN

Oral candidiasis encompasses fungal infections of the tongue and other oral mucosal sites with fungal overgrowth and its invasion of superficial oral tissues. Borneol was assessed in this research as the matrix-forming agent of clotrimazole-loaded in situ forming gel (ISG) comprising clove oil as the co-active agent and N-methyl pyrrolidone (NMP) as a solvent. Their physicochemical properties, including pH, density, viscosity, surface tension, contact angle, water tolerance, gel formation, and drug release/permeation, were determined. Their antimicrobial activities were tested using agar cup diffusion. The pH values of clotrimazole-loaded borneol-based ISGs were in the range of 5.59-6.61, which are close to the pH of 6.8 of saliva. Increasing the borneol content in the formulation slightly decreased the density, surface tension, water tolerance, and spray angle but increased the viscosity and gel formation. The borneol matrix formation from NMP removal promoted a significantly (p < 0.05) higher contact angle of the borneol-loaded ISGs on agarose gel and porcine buccal mucosa than those of all borneol-free solutions. Clotrimazole-loaded ISG containing 40% borneol demonstrated appropriate physicochemical properties and rapid gel formation at microscopic and macroscopic levels. In addition, it prolonged drug release with a maximum flux of 370 µg·cm-2 at 2 days. The borneol matrix generated from this ISG obsentively controlled the drug penetration through the porcine buccal membrane. Most clotrimazole amounts still remained in formulation at the donor part and then the buccal membrane and receiving medium, repectively. Therefore, the borneol matrix extended the drug release and penetration through the buccal membrane efficiently. Some accumulated clotrimazole in tissue should exhibit its potential antifugal activity against microbes invading the host tissue. The other predominant drug release into the saliva of the oral cavity should influence the pathogen of oropharyngeal candidiasis. Clotrimazole-loaded ISG demonstrated efficacious inhibition of growth against S. aureus, E. coli, C. albicans, C. krusei, C. Lusitaniae, and C. tropicalis. Consequently, the clotrimazole-loaded ISG exhibited great potential as a drug delivery system for oropharyngeal candidiasis treatment by localized spraying.

5.
Gels ; 8(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35448132

RESUMEN

Vancomycin hydrochloride (HCl) is a glycopeptide antibiotic used to treat serious or life-threatening infections, and it reduces plaque scores and gingivitis in periodontal patients. In this study, vancomycin HCl was incorporated into rosin in situ forming gel (ISG) and rosin in situ forming microparticles (ISM) to generate a local drug delivery system to treat periodontal disease. The physical properties of the ISG and ISM were measured, including pH, viscosity, injectability, adhesion properties, in-vitro transformation, and drug release. Moreover, the effectiveness of antimicrobial activity was tested using the agar-cup diffusion method against Staphylococcus aureus, Streptococcus mutans, Porphyromonas gingivalis, and Escherichia coli. Vancomycin HCl-loaded rosin-based ISG and ISM had a pH value in the range of 5.02−6.48 and exhibited the ease of injection with an injection force of less than 20 N. Additionally, the lubricity effect of the external oil phase of ISM promoted less work of injection than ISG and 40−60% rosin-based ISM showed good emulsion stability. The droplet size of emulsions containing 40%, 50%, and 60% rosin was 98.48 ± 16.11, 125.55 ± 4.75, and 137.80 ± 16.8 µm, respectively. Their obtained microparticles were significantly smaller in diameter, 78.63 ± 12.97, 93.81 ± 10.53, and 118.32 ± 15.61 µm, respectively, because the particles shrank due to the solvent loss from solvent exchange. Moreover, increasing the concentration of rosin increased the size of microparticles. After phase transformation, all formulations had better plasticity properties than elasticity; therefore, they could easily adapt to the specific shape of a patient's gum cavity. Both developed ISG and ISM presented inhibition zones against S. mutans and P. gingivalis, with ISG presenting significantly more effectively against these two microbes (p < 0.05). The vancomycin HCl-loaded rosin ISG and ISM delayed drug release for 7 days with efficient antimicrobial activities; thus, they exhibit potential as the drug delivery systems for periodontitis treatment.

6.
Mater Sci Eng C Mater Biol Appl ; 117: 111275, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919639

RESUMEN

The in situ forming system has attracted attention for periodontitis treatment owing to its sustainable drug release localisation at a periodontal pocket. Given its low aqueous solubility, beta-cyclodextrin (ß-CD) may serve as a matrix former of solvent exchange-induced in situ forming gel (ISG) and microparticle (ISM). Meloxicam (Mex)-loaded-ß-CD ISG and ISM were prepared using ß-CD in dimethyl sulphoxide (ISG) as the internal phase and camellia oil comprising 5% glyceryl monostearate as the external phase (ISM). Mex-loaded ß-CD systems comprising 40% ß-CD were easily injected via a 24-gauge needle. During solvent exchange with phosphate buffer saline (pH 6.8), the highly concentrated ß-CD ISG promoted the phase inversion of ß-CD aggregates into matrix-like. Upon exposure to aqueous phase, the ISM system comprising 40% ß-CD transformed into microparticles and extended the drug release to 7 days with minimised initial burst release following Fickian diffusion. Moreover, the potential degradability was evident from the high weight loss. High maximum deformation force with high viscous character initiated the slow diffusion rate of the solvent from the ISM system. Therefore, 40% ß-CD ISM is a potential local Mex-controlled release system of anti-inflammatory drug for periodontitis treatment.


Asunto(s)
Bolsa Periodontal , beta-Ciclodextrinas , Sistemas de Liberación de Medicamentos , Humanos , Meloxicam , Solubilidad , Solventes
7.
Int J Nanomedicine ; 11: 2855-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366064

RESUMEN

Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.


Asunto(s)
Emulsiones/química , Solventes/química , Suspensiones/química , Ultrasonido/métodos , Rastreo Diferencial de Calorimetría , Alcanfor/análisis , Química Farmacéutica/métodos , Cristalización , Ibuprofeno/farmacología , Mentol/análisis , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polvos , Electricidad Estática , Volatilización
8.
AAPS PharmSciTech ; 17(5): 1213-20, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26669887

RESUMEN

Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.


Asunto(s)
Ibuprofeno/química , Soluciones Farmacéuticas/química , Solventes/química , Rastreo Diferencial de Calorimetría/métodos , Alcanfor/química , Sistemas de Liberación de Medicamentos/métodos , Enlace de Hidrógeno , Mentol/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA