Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nat Commun ; 15(1): 6807, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122719

RESUMEN

The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.


Asunto(s)
Microscopía por Crioelectrón , Ciclina A , Quinasa 2 Dependiente de la Ciclina , Fosfatasas cdc25 , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/química , Fosfatasas cdc25/ultraestructura , Fosfatasas cdc25/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/ultraestructura , Humanos , Ciclina A/metabolismo , Ciclina A/química , Unión Proteica , Modelos Moleculares , Secuencia de Aminoácidos
2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915634

RESUMEN

Single-stranded DNA bacteriophages of the Microviridae family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection. Here, we have characterized an exceptionally large microvirus, Ebor, and provide crucial insights into long-standing mechanistic questions. Cryogenic electron microscopy of Ebor revealed a capsid with trimeric protrusions that recognise lipopolysaccharides on the host surface. Cryogenic electron tomography of the host cell colonized with virus particles demonstrated that the virus initially attaches to the cell via five such protrusions, located at the corners of a single pentamer. This interaction triggers a stargate mechanism of capsid opening along the 5-fold symmetry axis, enabling delivery of the virus genome. Despite variations in specific virus-host interactions among different Microviridae family viruses, structural data indicate that the stargate mechanism of infection is universally employed by all members of the family. Startlingly, our data reveal a mechanistic link for the opening of relatively small capsids made out of a single jelly-roll fold with the structurally unrelated giant viruses.

3.
Chem Sci ; 15(13): 4969-4980, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550701

RESUMEN

The selective α,ß-desaturation of cyclic carbonyl compounds, which are found in the core of many steroid and bioactive molecules, using green chemistry is highly desirable. To achieve this task, we have for the first time described and solved the de novo structure of a member of the cyclohexanone dehydrogenase class of enzymes. The breadth of substrate specificity was investigated by assaying the cyclohexanone dehydrogenase, from Alicycliphilus denitrificans, against several cyclic ketones, lactones and lactams. To investigate substrate binding, a catalytic variant, Y195F, was generated and used to obtain a crystallographic complex with the natural substrate, cyclohexanone. This revealed substrate-active site interactions, as well as the proximity of the cofactor, flavin adenine dinucleotide, and enabled us to propose a mechanistic function to key amino acids. We then used molecular dynamic simulations to guide design to add functionality to the cyclohexanone dehydrogenase enzyme. The resulting W113A variant had overall improved enzyme activity and substrate scope, i.e., accepting the bulkier carbonyl compound, dihydrocoumarin. Structural analysis of the W113A variant revealed a broader, more open active site, which helped explain the modified substrate specificity. This work paves the way for future bespoke regioselective α,ß-desaturation in the synthesis of important bioactive molecules via rational enzyme engineering.

4.
J Biol Chem ; 299(3): 102936, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702253

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Dominios Proteicos , Staphylococcus aureus , Humanos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Dominios Proteicos/fisiología , Estructura Terciaria de Proteína , Unión Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliales/microbiología
5.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748525

RESUMEN

Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.


Asunto(s)
Bacillus subtilis , Peptidoglicano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/metabolismo , Oligopéptidos , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
6.
PLoS One ; 16(3): e0248190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711051

RESUMEN

Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both ß-1,4-N-acetyl- and ß-1,4-N,6-O-diacetylmuramidase activities, cleaving the ß-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.


Asunto(s)
Hongos/metabolismo , Muramidasa/metabolismo , Conformación Proteica , Animales , Pared Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares
7.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1124-1133, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135683

RESUMEN

α-L-Arabinofuranosidases from glycoside hydrolase family 51 use a stereochemically retaining hydrolytic mechanism to liberate nonreducing terminal α-L-arabinofuranose residues from plant polysaccharides such as arabinoxylan and arabinan. To date, more than ten fungal GH51 α-L-arabinofuranosidases have been functionally characterized, yet no structure of a fungal GH51 enzyme has been solved. In contrast, seven bacterial GH51 enzyme structures, with low sequence similarity to the fungal GH51 enzymes, have been determined. Here, the crystallization and structural characterization of MgGH51, an industrially relevant GH51 α-L-arabinofuranosidase cloned from Meripilus giganteus, are reported. Three crystal forms were grown in different crystallization conditions. The unliganded structure was solved using sulfur SAD data collected from a single crystal using the I23 in vacuo diffraction beamline at Diamond Light Source. Crystal soaks with arabinose, 1,4-dideoxy-1,4-imino-L-arabinitol and two cyclophellitol-derived arabinose mimics reveal a conserved catalytic site and conformational itinerary between fungal and bacterial GH51 α-L-arabinofuranosidases.


Asunto(s)
Glicósido Hidrolasas/química , Polyporales/enzimología , Arabinosa/química , Dominio Catalítico , Iminofuranosas/química , Ligandos , Modelos Moleculares , Unión Proteica , Alcoholes del Azúcar/química
8.
Open Biol ; 10(10): 200137, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33081637

RESUMEN

Insulin is produced and stored inside the pancreatic ß-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model ß-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 ß-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent ß-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model ß-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.


Asunto(s)
Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , Zinc/metabolismo , Animales , Fraccionamiento Químico , Gránulos Citoplasmáticos/metabolismo , Citometría de Flujo/métodos , Glucosa/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transportador 8 de Zinc
9.
PeerJ ; 8: e9408, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617193

RESUMEN

BACKGROUND: Several examples have emerged of enzymes where slow conformational changes are of key importance for function and where low populated conformations in the resting enzyme resemble the conformations of intermediate states in the catalytic process. Previous work on the subtilisin protease, Savinase, from Bacillus lentus by NMR spectroscopy suggested that this enzyme undergoes slow conformational dynamics around the substrate binding site. However, the functional importance of such dynamics is unknown. METHODS: Here we have probed the conformational heterogeneity in Savinase by following the temperature dependent chemical shift changes. In addition, we have measured changes in the local stability of the enzyme when the inhibitor phenylmethylsulfonyl fluoride is bound using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Finally, we have used X-ray crystallography to compare electron densities collected at cryogenic and ambient temperatures and searched for possible low populated alternative conformations in the crystals. RESULTS: The NMR temperature titration shows that Savinase is most flexible around the active site, but no distinct alternative states could be identified. The HDX shows that modification of Savinase with inhibitor has very little impact on the stability of hydrogen bonds and solvent accessibility of the backbone. The most pronounced structural heterogeneities detected in the diffraction data are limited to alternative side-chain rotamers and a short peptide segment that has an alternative main-chain conformation in the crystal at cryo conditions. Collectively, our data show that there is very little structural heterogeneity in the resting state of Savinase and hence that Savinase does not rely on conformational selection to drive the catalytic process.

10.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 6): 241-249, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510464

RESUMEN

CotE is a coat protein that is present in the spores of Clostridium difficile, an obligate anaerobic bacterium and a pathogen that is a leading cause of antibiotic-associated diarrhoea in hospital patients. Spores serve as the agents of disease transmission, and CotE has been implicated in their attachment to the gut epithelium and subsequent colonization of the host. CotE consists of an N-terminal peroxiredoxin domain and a C-terminal chitinase domain. Here, a C-terminal fragment of CotE comprising residues 349-712 has been crystallized and its structure has been determined to reveal a core eight-stranded ß-barrel fold with a neighbouring subdomain containing a five-stranded ß-sheet. A prominent groove running across the top of the barrel is lined by residues that are conserved in family 18 glycosyl hydrolases and which participate in catalysis. Electron density identified in the groove defines the pentapeptide Gly-Pro-Ala-Met-Lys derived from the N-terminus of the protein following proteolytic cleavage to remove an affinity-purification tag. These observations suggest the possibility of designing peptidomimetics to block C. difficile transmission.


Asunto(s)
Proteínas Bacterianas/química , Quitinasas/química , Clostridioides difficile/metabolismo , Peroxirredoxinas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Quitinasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Conformación Proteica
11.
Proc Natl Acad Sci U S A ; 116(52): 26540-26548, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818940

RESUMEN

Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the ß-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin ß-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain.

12.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698762

RESUMEN

Muramidases/lysozymes are important bio-molecules, which cleave the glycan backbone in the peptidoglycan polymer found in bacterial cell walls. The glycoside hydrolase (GH) family 22 C-type lysozyme, from the folivorous bird Opisthocomus hoazin (stinkbird), was expressed in Aspergillus oryzae, and a set of variants was produced. All variants were enzymatically active, including those designed to probe key differences between the Hoatzin enzyme and Hen Egg White lysozyme. Four variants showed improved thermostability at pH 4.7, compared to the wild type. The X-ray structure of the enzyme was determined in the apo form and in complex with chitin oligomers. Bioinformatic analysis of avian GH22 amino acid sequences showed that they separate out into three distinct subgroups (chicken-like birds, sea birds and other birds). The Hoatzin is found in the "other birds" group and we propose that this represents a new cluster of avian upper-gut enzymes.


Asunto(s)
Aves/metabolismo , Muramidasa/química , Tracto Gastrointestinal Superior/enzimología , Secuencia de Aminoácidos , Animales , Aspergillus/metabolismo , Pared Celular/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Filogenia , Polisacáridos/química , Electricidad Estática
13.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623309

RESUMEN

Amylases are probably the best studied glycoside hydrolases and have a huge biotechnological value for industrial processes on starch. Multiple amylases from fungi and microbes are currently in use. Whereas bacterial amylases are well suited for many industrial processes due to their high stability, fungal amylases are recognized as safe and are preferred in the food industry, although they lack the pH tolerance and stability of their bacterial counterparts. Here, we describe three amylases, two of which have a broad pH spectrum extending to pH 8 and higher stability well suited for a broad set of industrial applications. These enzymes have the characteristic GH13 α-amylase fold with a central (ß/α)8-domain, an insertion domain with the canonical calcium binding site and a C-terminal ß-sandwich domain. The active site was identified based on the binding of the inhibitor acarbose in form of a transglycosylation product, in the amylases from Thamnidium elegans and Cordyceps farinosa. The three amylases have shortened loops flanking the nonreducing end of the substrate binding cleft, creating a more open crevice. Moreover, a potential novel binding site in the C-terminal domain of the Cordyceps enzyme was identified, which might be part of a starch interaction site. In addition, Cordyceps farinosa amylase presented a successful example of using the microseed matrix screening technique to significantly speed-up crystallization.


Asunto(s)
Amilasas/química , Amilasas/metabolismo , Hongos/enzimología , Sitios de Unión , Dominio Catalítico , Activación Enzimática , Estabilidad de Enzimas , Glucosa/química , Glucosa/metabolismo , Glicosilación , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , alfa-Amilasas/química , alfa-Amilasas/metabolismo
14.
J Am Chem Soc ; 141(40): 15818-15826, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31518131

RESUMEN

Solvent organization is a key but underexploited contributor to the thermodynamics of protein-ligand recognition, with implications for ligand discovery, drug resistance, and protein engineering. Here, we explore the contribution of solvent to ligand binding in the Haemophilus influenzae virulence protein SiaP. By introducing a single mutation without direct ligand contacts, we observed a >1000-fold change in sialic acid binding affinity. Crystallographic and calorimetric data of wild-type and mutant SiaP showed that this change results from an enthalpically unfavorable perturbation of the solvent network. This disruption is reflected by changes in the normalized atomic displacement parameters of crystallographic water molecules. In SiaP's enclosed cavity, relative differences in water-network dynamics serve as a simple predictor of changes in the free energy of binding upon changing protein, ligand, or both. This suggests that solvent structure is an evolutionary constraint on protein sequence that contributes to ligand affinity and selectivity.


Asunto(s)
Solventes/química , Proteínas Virales/química , Factores de Virulencia/química , Agua/química , Sitios de Unión , Ligandos , Unión Proteica , Conformación Proteica , Termodinámica
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 246-253, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950825

RESUMEN

Peptides play an important signalling role in Bacillus subtilis, where their uptake by one of two ABC-type oligopeptide transporters, Opp and App, is required for efficient sporulation. Homologues of these transporters in Clostridium difficile have been characterized, but their role, and hence that of peptides, in regulating sporulation in this organism is less clear. Here, the oligopeptide-binding receptor proteins for these transporters, CdAppA and CdOppA, have been purified and partially characterized, and the crystal structure of CdAppA has been determined in an open unliganded form. Peptide binding to either protein could not be observed in Thermofluor assays with a set of ten peptides of varying lengths and compositions. Re-examination of the protein sequences together with structure comparisons prompts the proposal that CdAppA is not a versatile peptide-binding protein but instead may bind a restricted set of peptides. Meanwhile, CdOppA is likely to be the receptor protein for a nickel-uptake system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Níquel/metabolismo , Unión Proteica , Transducción de Señal , Esporas Bacterianas/metabolismo , Especificidad por Sustrato
16.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 946-955, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289404

RESUMEN

The biological conversion of lignocellulosic matter into high-value chemicals or biofuels is of increasing industrial importance as the sector slowly transitions away from nonrenewable sources. Many industrial processes involve the use of cellulolytic enzyme cocktails - a selection of glycoside hydrolases and, increasingly, polysaccharide oxygenases - to break down recalcitrant plant polysaccharides. ORFs from the genome of Teredinibacter turnerae, a symbiont hosted within the gills of marine shipworms, were identified in order to search for enzymes with desirable traits. Here, a putative T. turnerae glycoside hydrolase from family 8, hereafter referred to as TtGH8, is analysed. The enzyme is shown to be active against ß-1,4-xylan and mixed-linkage (ß-1,3,ß-1,4) marine xylan. Kinetic parameters, obtained using high-performance anion-exchange chromatography with pulsed amperometric detection and 3,5-dinitrosalicyclic acid reducing-sugar assays, show that TtGH8 catalyses the hydrolysis of ß-1,4-xylohexaose with a kcat/Km of 7.5 × 107 M-1 min-1 but displays maximal activity against mixed-linkage polymeric xylans, hinting at a primary role in the degradation of marine polysaccharides. The three-dimensional structure of TtGH8 was solved in uncomplexed and xylobiose-, xylotriose- and xylohexaose-bound forms at approximately 1.5 Šresolution; the latter was consistent with the greater kcat/Km for hexasaccharide substrates. A 2,5B boat conformation observed in the -1 position of bound xylotriose is consistent with the proposed conformational itinerary for this class of enzyme. This work shows TtGH8 to be effective at the degradation of xylan-based substrates, notably marine xylan, further exemplifying the potential of T. turnerae for effective and diverse biomass degradation.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Gammaproteobacteria/enzimología , Bacilos Gramnegativos Anaerobios Facultativos/enzimología , Proteínas Bacterianas/química , Biomasa , Glicósido Hidrolasas/química , Cinética , Células Vegetales/metabolismo , Plantas/química , Plantas/metabolismo , Polisacáridos/metabolismo , Conformación Proteica , Xilanos/metabolismo
17.
Nat Commun ; 9(1): 3860, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242155

RESUMEN

The insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues. Here, we report structures of the Drosophila IBP Imp-L2 in its free form and bound to Drosophila insulin-like peptide 5 and human IGF-1. Imp-L2 contains two immunoglobulin-like fold domains and its architecture is unrelated to human IGFBPs, suggesting a distinct strategy for bioavailability regulation of insulin-like hormones. Similar hormone binding modes may exist in other insect vectors, as the IBP sequences are highly conserved. Therefore, these findings may open research routes towards a rational interference of transmission of diseases such as malaria, dengue and yellow fevers.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/química , Animales , Disponibilidad Biológica , Drosophila , Humanos , Insulina/farmacocinética , Factor I del Crecimiento Similar a la Insulina/química , Conformación Proteica
18.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 68-84, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533233

RESUMEN

The CCP4 (Collaborative Computational Project, Number 4) software suite for macromolecular structure determination by X-ray crystallography groups brings together many programs and libraries that, by means of well established conventions, interoperate effectively without adhering to strict design guidelines. Because of this inherent flexibility, users are often presented with diverse, even divergent, choices for solving every type of problem. Recently, CCP4 introduced CCP4i2, a modern graphical interface designed to help structural biologists to navigate the process of structure determination, with an emphasis on pipelining and the streamlined presentation of results. In addition, CCP4i2 provides a framework for writing structure-solution scripts that can be built up incrementally to create increasingly automatic procedures.


Asunto(s)
Gráficos por Computador , Cristalografía por Rayos X/métodos , Programas Informáticos , Interfaz Usuario-Computador , Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Estructura Molecular , Proteínas/química
19.
Sci Rep ; 7: 45941, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383577

RESUMEN

Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM4-) to five, six and eight (5-, 6-, 8-LICAM4-, respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM4- structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM4- is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM4- but decreases for 6- and 8-LICAM4-. The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Compuestos Férricos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Sideróforos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Compuestos Férricos/química , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión a Hierro , Mutación , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Sideróforos/química , Espermidina/análogos & derivados , Espermidina/química , Espermidina/metabolismo
20.
J Biol Chem ; 292(20): 8342-8355, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28348075

RESUMEN

Human insulin is a pivotal protein hormone controlling metabolism, growth, and aging and whose malfunctioning underlies diabetes, some cancers, and neurodegeneration. Despite its central position in human physiology, the in vivo oligomeric state and conformation of insulin in its storage granules in the pancreas are not known. In contrast, many in vitro structures of hexamers of this hormone are available and fall into three conformational states: T6, T3Rf3, and R6 As there is strong evidence for accumulation of neurotransmitters, such as serotonin and dopamine, in insulin storage granules in pancreatic ß-cells, we probed by molecular dynamics (MD) and protein crystallography (PC) if these endogenous ligands affect and stabilize insulin oligomers. Parallel studies independently converged on the observation that serotonin binds well within the insulin hexamer (site I), stabilizing it in the T3R3 conformation. Both methods indicated serotonin binding on the hexamer surface (site III) as well. MD, but not PC, indicated that dopamine was also a good site III ligand. Some of the PC studies also included arginine, which may be abundant in insulin granules upon processing of pro-insulin, and stable T3R3 hexamers loaded with both serotonin and arginine were obtained. The MD and PC results were supported further by in solution spectroscopic studies with R-state-specific chromophore. Our results indicate that the T3R3 oligomer is a plausible insulin pancreatic storage form, resulting from its complex interplay with neurotransmitters, and pro-insulin processing products. These findings may have implications for clinical insulin formulations.


Asunto(s)
Simulación por Computador , Células Secretoras de Insulina , Insulina , Modelos Biológicos , Neurotransmisores/metabolismo , Multimerización de Proteína , Vesículas Secretoras , Serotonina/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Simulación de Dinámica Molecular , Vesículas Secretoras/química , Vesículas Secretoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA