Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Commun Biol ; 7(1): 476, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637646

RESUMEN

Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.


Asunto(s)
Delfín Mular , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Florida/epidemiología , Neuraminidasa , Virus de la Influenza A/fisiología , Aves
2.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664384

RESUMEN

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Asunto(s)
Quirópteros , Patos , Hurones , Subtipo H9N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Receptores de Superficie Celular , Animales , Quirópteros/virología , Humanos , Hurones/virología , Femenino , Masculino , Subtipo H9N2 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Ratones , Patos/virología , Replicación Viral , Gripe Humana/virología , Gripe Humana/transmisión , Pulmón/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Neuraminidasa/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38318942

RESUMEN

AIM: Mindfulness-based interventions have been tested as preventive programs for childhood internalizing difficulties, but most research has been at a 'universal' level with small to null effects. Mindfulness-Based Cognitive Therapy for Children (MBCT-C) has similar effects to Cognitive Behaviour Therapy (CBT) when used as a small-group, targeted preventive program. Knowledge gaps include the longer-term effectiveness of MBCT-C relative to CBT and the benefits of adding a parent module. This trial aims to compare MCBT-C to traditional CBT, including a parent module, to 15-months post-intervention and to test the feasibility and acceptability of adding a parent module. METHODS: Participants will be recruited from primary schools in areas of socio-economic disadvantage in South Australia (n = 194). Children (aged 9-12) years with signs of internalizing difficulties (e.g., shy, withdrawn, worried), and their parents, will be eligible for this two-armed randomized controlled non-inferiority trial (RCT). Children will participate in 10 group sessions of MBCT-C or CBT, facilitated by psychologists, and parents from both conditions will participate in two parent-only group sessions. Child self-report measures include depression and anxiety, as well as attention, mindfulness and self-compassion. Parent measures include symptoms of depression and anxiety, mindfulness, and parent-child relationship strength. The primary outcome will be child anxiety and depression (Revised Child Anxiety and Depression Scale-25). Measures will be collected pre and post intervention, and at 3, 6, 12 and 15-month follow up. RESULTS: Schools will be recruited from October 2022. Nomination of children will commence from February 2023. Program implementation will begin May 2023. CONCLUSIONS: This trial will have implications for the feasibility of involving parents in preventative programs, as well as whether mindfulness-based interventions prevent internalizing difficulties over time.

4.
J Infect Dis ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770028

RESUMEN

The antiviral susceptibility of currently circulating (2022-2023) highly pathogenic avian influenza (HPAI) A(H5N1) viruses was assessed by genotypic and phenotypic approaches. The frequency of neuraminidase (NA) and polymerase acidic (PA) substitutions associated with reduced inhibition by NA inhibitors (NAIs) (21/2698, 0.78%) or by the PA inhibitor baloxavir (14/2600, 0.54%) was low. Phenotypic testing of 22 clade 2.3.2.1a and 2.3.4.4b viruses revealed broad susceptibility to NAIs and baloxavir concluding that most contemporary HPAI A(H5N1) viruses retain susceptibility to antiviral drugs. Novel NA-K432E and NA-T438I substitutions (N2 numbering) were identified at elevated frequencies (104/2698, 3.85%) and caused reduced zanamivir and peramivir inhibition.

5.
Emerg Microbes Infect ; 12(2): e2252510, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37622753

RESUMEN

Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Bangladesh/epidemiología , Aves , Patos , Aves de Corral , Genotipo , Filogenia
6.
Nat Commun ; 14(1): 3082, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248261

RESUMEN

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Humana/epidemiología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Animales Salvajes , Aves , Aves de Corral , Filogenia , Mamíferos
7.
Neuropsychology ; 37(5): 615-620, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36862453

RESUMEN

OBJECTIVE: Previous studies demonstrated that individuals with agenesis of the corpus callosum (AgCC) experience difficulties in novel and complex problem-solving. The present study investigated verbal problem-solving, deductive reasoning, and semantic inference in AgCC. METHOD: Capacity for semantic inference was tested in 25 individuals with AgCC and normal-range intelligence compared to 29 neurotypical controls. The Word Context Test (WCT) of Delis-Kaplan Executive Function System was used, employing a novel method of analysis (semantic similarity) to detect trial-by-trial progress toward a solution. RESULTS: With respect to the typical WCT scores, persons with AgCC had fewer total consecutive correct responses. In addition, semantic similarity to the correct word was significantly lower overall in persons with AgCC than in controls. CONCLUSION: These findings indicated that individuals with AgCC who have intelligence in the normal range are less able at the WCT taking all trials into account, although they often solve the problem eventually. This outcome is consistent with previous research indicating that callosal absence in AgCC results in a restricted imagination for possibilities, limiting their problem-solving and inferential capacities. The results also highlight the usefulness of semantic similarity as a means of scoring the WCT. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Cuerpo Calloso , Semántica , Humanos , Agenesia del Cuerpo Calloso/complicaciones , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cognición , Solución de Problemas
8.
Viruses ; 14(9)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36146881

RESUMEN

A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Dibenzotiepinas , Endonucleasas/genética , Evolución Molecular , Adaptación al Huésped , Humanos , Gripe Aviar/epidemiología , Mamíferos , Morfolinas , Nucleótidos , Filogenia , Aves de Corral , Piridonas , Triazinas , Uganda/epidemiología , Virulencia/genética
9.
Transbound Emerg Dis ; 69(4): e605-e620, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34989481

RESUMEN

From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Enfermedades de las Aves de Corral , Animales , Bangladesh/epidemiología , Pollos , Patos , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N3 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología , Humedales
10.
Viruses ; 13(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34960626

RESUMEN

Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.


Asunto(s)
Patos/virología , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Filogenia
11.
Emerg Infect Dis ; 27(9): 2492-2494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34424167

RESUMEN

Migratory birds play a major role in spreading influenza viruses over long distances. We report highly pathogenic avian influenza A(H5N6) viruses in migratory and resident ducks in Bangladesh. The viruses were genetically similar to viruses detected in wild birds in China and Mongolia, suggesting migration-associated dissemination of these zoonotic pathogens.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Bangladesh/epidemiología , Aves , Gripe Aviar/epidemiología , Aves de Corral
12.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907981

RESUMEN

The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Mamíferos/virología , Filogenia , Aves de Corral/virología , Animales , Bangladesh/epidemiología , Pollos , Hurones , Genoma Viral , Genotipo , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Virus de la Influenza A/genética , Gripe Aviar/patología , Gripe Aviar/transmisión , Pulmón/patología , Ratones , Pandemias , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Proteínas no Estructurales Virales/genética , Virulencia
13.
Emerg Microbes Infect ; 8(1): 650-661, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31014196

RESUMEN

Since November 2008, we have conducted active avian influenza surveillance in Bangladesh. Clades 2.2.2, 2.3.4.2, and 2.3.2.1a of highly pathogenic avian influenza H5N1 viruses have all been identified in Bangladeshi live poultry markets (LPMs), although, since the end of 2014, H5N1 viruses have been exclusively from clade 2.3.2.1a. In June 2015, a new reassortant H5N1 virus (H5N1-R1) from clade 2.3.2.1a was identified, containing haemagglutinin, neuraminidase, and matrix genes of H5N1 viruses circulating in Bangladesh since 2011, plus five other genes of Eurasian-lineage low pathogenic avian influenza A (LPAI) viruses. Here we report the status of circulating avian influenza A viruses in Bangladeshi LPMs from March 2016 to January 2018. Until April 2017, H5N1 viruses exclusively belonged to H5N1-R1 clade 2.3.2.1a. However, in May 2017, we identified another reassortant H5N1 (H5N1-R2), also of clade 2.3.2.1a, wherein the PA gene segment of H5N1-R1 was replaced by that of another Eurasian-lineage LPAI virus related to A/duck/Bangladesh/30828/2016 (H3N8), detected in Bangladeshi LPM in September 2016. Currently, both reassortant H5N1-R1 and H5N1-R2 co-circulate in Bangladeshi LPMs. Furthermore, some LPAI viruses isolated from LPMs during 2016-2017 were closely related to those from ducks in free-range farms and wild birds in Tanguar haor, a wetland region of Bangladesh where ducks have frequent contact with migratory birds. These data support a hypothesis where Tanguar haor-like ecosystems provide a mechanism for movement of LPAI viruses to LPMs where reassortment with poultry viruses occurs adding to the diversity of viruses at this human-animal interface.


Asunto(s)
Evolución Molecular , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/virología , Aves de Corral , Virus Reordenados/clasificación , Virus Reordenados/genética , Animales , Bangladesh/epidemiología , Variación Genética , Genotipo , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Epidemiología Molecular , Virus Reordenados/aislamiento & purificación
14.
Influenza Other Respir Viruses ; 12(6): 814-817, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29989679

RESUMEN

The H9N2 influenza viruses that have become established in Bangladeshi live poultry markets possess five gene segments of the highly pathogenic H7N3 avian influenza virus. We assessed the replication, transmission, and disease potential of three H9N2 viruses in chickens and New World quail. Each virus replicated to high titers and transmitted by the airborne route to contacts in both species. Infected chickens showed no disease signs, and the viruses differed in their disease potential in New World quail. New World quail were more susceptible than chickens to H9N2 viruses and shed virus after airborne transmission for 10 days. Consequently, New World quail are a potential threat in the maintenance and spread of influenza virus in live poultry markets.


Asunto(s)
Pollos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Codorniz , Animales , Bangladesh , Susceptibilidad a Enfermedades , Transmisión de Enfermedad Infecciosa , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/patología , Infecciones por Orthomyxoviridae , Replicación Viral
15.
Emerg Microbes Infect ; 6(8): e72, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28790460

RESUMEN

Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Migración Animal , Animales , Animales Salvajes/virología , Anseriformes/virología , Bangladesh/epidemiología , Patos/virología , Monitoreo Epidemiológico , Genotipo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Neuraminidasa/genética , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/transmisión , Virus Reordenados/genética , Proteínas de la Matriz Viral/genética , Humedales
17.
Emerg Microbes Infect ; 6(3): e12, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28270655

RESUMEN

Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2 viruses have been recognized as threats to public health in Bangladesh since 2007. Although live bird markets (LBMs) have been implicated in the transmission, dissemination, and circulation of these viruses, an in-depth analysis of the dynamics of avian transmission of H5N1 and H9N2 viruses at the human-animal interface has been lacking. Here we present and evaluate epidemiological findings from active surveillance conducted among poultry in various production sectors in Bangladesh from 2008 to 2016. Overall, the prevalence of avian influenza viruses (AIVs) in collected samples was 24%. Our data show that AIVs are more prevalent in domestic birds within LBMs (30.4%) than in farms (9.6%). Quail, chickens and ducks showed a high prevalence of AIVs (>20%). The vast majority of AIVs detected (99.7%) have come from apparently healthy birds and poultry drinking water served as a reservoir of AIVs with a prevalence of 32.5% in collected samples. HPAI H5N1 was more frequently detected in ducks while H9N2 was more common in chickens and quail. LBMs, particularly wholesale markets, have become a potential reservoir for various types of AIVs, including HPAI H5N1 and LPAI H9N2. The persistence of AIVs in LBMs is of great concern to public health, and this study highlights the importance of regularly reviewing and implementing infection control procedures as a means of reducing the exposure of the general public to AIVs.Emerging Microbes & Infections (2017) 6, e12; doi:10.1038/emi.2016.142; published online 8 March 2017.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Microbiología del Agua , Animales , Bangladesh , Pollos , Patos , Monitoreo Epidemiológico , Gripe Aviar/transmisión , Prevalencia , Codorniz
18.
Vaccine ; 35(10): 1424-1430, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28162820

RESUMEN

In 2013, a novel avian-origin H7N9 influenza A virus causing severe lower respiratory tract disease in humans emerged in China, with continued sporadic cases. An effective vaccine is needed for this virus in case it acquires transmissibility among humans; however, PR8-based A/Anhui/1/2013 (Anhui/1, H7N9), a WHO-recommended H7N9 candidate vaccine virus (CVV) for vaccine production, does not replicate well in chicken eggs, posing an obstacle to egg-based vaccine production. To address this issue, we explored the possibility that PR8's hemagglutinin (HA) and neuraminidase (NA) packaging signals mediate improvement of Anhui/1 CVV yield in eggs. We constructed chimeric HA and NA genes having the coding region of Anhui/1 HA and NA flanked by the 5' and 3' packaging signals of PR8's HA and NA, respectively. The growth of CVVs containing the chimeric HA was not affected, but that of those containing the chimeric NA gene grew in embryonated chicken eggs with a more than 2-fold higher titer than that of WT CVV. Upon 6 passages in eggs further yield increase was achieved although this was not associated with any changes in the chimeric NA gene. The HA of the passaged CVV, did, however, exhibit egg-adaptive mutations and one of them (HA-G218E) improved CVV growth in eggs without significantly changing antigenicity. The HA-G218E substitution and a chimeric NA, thus, combine to provide an Anhui/1 CVV with properties more favorable for vaccine manufacture.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Subtipo H7N9 del Virus de la Influenza A/fisiología , Neuraminidasa/biosíntesis , Proteínas Virales/biosíntesis , Ensamble de Virus , Cultivo de Virus/métodos , Replicación Viral , Animales , Embrión de Pollo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Neuraminidasa/genética , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Carga Viral , Proteínas Virales/genética
19.
J Glob Health ; 7(2): 020901, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29302326

RESUMEN

BACKGROUND: Globally, mental disorders are the leading cause of disability among children and adolescents. To date, there has been no estimate of developmental assistance supporting mental health projects that target children and adolescents (DAMH-CA). This study aimed to identify, describe and analyse DAMH-CA with respect to annual trends (2007-2014), sector, project type, recipient regions, and top donor and recipient countries, and estimate annual DAMH-CA per child/adolescent by region. METHODS: Developmental assistance for all projects focused on children and adolescent mental health between 2007 and 2014 was identified on the Organisation for Economic Co-operation and Development's (OECD) Creditor Reporting System, and analysed by target population, sector, project type, donors, and recipients. The study did not include governmental or private organisation funds, nor funding for projects that targeted the community or those that included mental health but not as a primary objective. RESULTS: Between 2007 and 2014, 704 projects were identified, constituting US$ 88.35 million in DAMH-CA, with an average of 16.9% of annual development assistance for mental health. Three quarters of DAMH-CA was used to fund projects in the humanitarian sector, while less than 10% was directed at mental health projects within the education, HIV/AIDS, rights, and neurology sectors. DAMH-CA was predominantly invested in psychosocial support projects (US$ 63.24 million, 72%), while little in absolute and relative terms supported capacity building, prevention, promotion or research, with the latter receiving just US$ 1.2 million over the eight years (1.4% of total DAMH-CA). For 2014, DAMH-CA per child/adolescent was US$ 0.02 in Europe, less than US$ 0.01 in Asia, Africa, and Latin America and the Caribbean, and US$ 0 in Oceania. CONCLUSIONS: To mitigate the growing burden of mental and neurological disorders, increased financial aid must be invested in child and adolescent mental health, especially with respect to capacity building, research and prevention of mental disorder projects. The present findings can be used to inform policy development and guide resource allocation, as current developmental assistance is described by sector and project type, thereby facilitating the identification of specific areas of investment need.


Asunto(s)
Servicios de Salud del Niño/economía , Países en Desarrollo , Asignación de Recursos para la Atención de Salud/estadística & datos numéricos , Asignación de Recursos para la Atención de Salud/tendencias , Servicios de Salud Mental/economía , Adolescente , Niño , Servicios de Salud del Niño/organización & administración , Humanos , Trastornos Mentales/prevención & control , Servicios de Salud Mental/organización & administración
20.
Influenza Other Respir Viruses ; 10(6): 486-492, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27339410

RESUMEN

We report a whole-genome analysis of 19 influenza A(H1N1)pdm09 isolates from four Ugandan hospitals between 2009 and 2011. The isolates differed from the vaccine strain A/California/07/2009 by three amino acid substitutions P100S, S220T, and I338V in the hemagglutinin and by two amino acid substitutions V106I and N248D in the neuraminidase proteins with consistent mutations in all gene segments distinguishing isolates from the 2009/2010 to 2010/2011 seasons. Phylogenetic analysis showed low genetic evolution, with genetic distances of 0%-1.3% and 0.1%-1.6% for HA and NA genes, respectively. The amino acid substitutions did not lead to antigenic differences from the reference strains.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Sustitución de Aminoácidos , Antígenos Virales , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Neuraminidasa/química , Neuraminidasa/genética , Filogenia , ARN Viral/genética , Estaciones del Año , Análisis de Secuencia de ARN , Uganda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA