Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
STAR Protoc ; 2(4): 100945, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34816128

RESUMEN

Protein regulation by post-translational modifications and protein-protein interactions is critical to controlling molecular pathways. Here, we describe an immunoaffinity purification approach in Saccharomyces cerevisiae. The protocol uses an endogenously-expressed epitope-tagged protein and can be applied to the identification of post-translational modifications or protein binding partners. The lysine methyltransferase Set5 is used as an example here to purify phosphorylated Set5 and identify phosphosites; however, this approach can be applied to a diverse set of proteins in yeast. For complete details on the use and execution of this protocol, please refer to Jaiswal et al. (2020).


Asunto(s)
Inmunoprecipitación/métodos , Mapeo de Interacción de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae , Centrifugación , Electroforesis en Gel de Poliacrilamida , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
2.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32211899

RESUMEN

The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Recombinación Genética/genética , Complejo Sinaptonémico/genética , Animales , Emparejamiento Cromosómico/genética , Cromosomas/genética , Intercambio Genético/genética , Meiosis/genética , Mutación/genética
3.
Mol Cell Biol ; 40(2)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31685550

RESUMEN

SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Dominios MYND , Metilación , Metiltransferasas/análisis , Fosforilación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/análisis
4.
J Mol Biol ; 429(13): 1946-1957, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27769718

RESUMEN

When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.


Asunto(s)
Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Código de Histonas , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA