Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur J Med Chem ; 280: 116936, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39395301

RESUMEN

In search of semisynthetic derivatives with increased antitumor activity, we condensed sulforaphane (SFR) with rhodol, a fluorophore platform capable of modifying the intracellular trafficking and pharmacokinetics of the linked molecules. The two tested derivatives, namely MG28 and MG46, showed a far higher, as compared to SFR, cytotoxicity toward cancer cells. Apoptotic cell death was preceded by the extensive generation of DNA lesions, which were repaired relatively slowly and caused formation of micronuclei. Unlike SFR, rhodol-SFR conjugates' DNA lesions resulted from direct interactions with nuclear DNA. Overall, MG28 and MG46 exhibit a remarkable cytotoxic effect, which is the likely consequence of their direct and intense DNA damaging activity, i.e., a novel and peculiar mechanism arising from the conjugation of the parental rhodol and SFR. Considering that a wide number of clinically used drugs kill cancer cells by inducing DNA damage, MG could represent a new and promising chance in antitumor chemotherapy.

2.
Cell Mol Life Sci ; 81(1): 144, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494579

RESUMEN

Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.


Asunto(s)
Bacteriófagos , Neoplasias del Colon , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Muerte Celular , Rosa Bengala/farmacología , Rosa Bengala/química , Neoplasias del Colon/terapia
3.
Mar Drugs ; 21(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37233501

RESUMEN

Angiogenesis and metastasis represent two challenging targets to combat cancer development in the later stages of its progression. Numerous studies have indicated the important role of natural products in blocking tumor angiogenesis signaling pathways in several advanced tumors. In recent years, the marine polysaccharides fucoidans emerged as promising anticancer compounds showing potent antitumor activity in both in vitro and in vivo models of different types of cancers. The objective of this review is to focus on the antiangiogenic and antimetastatic activities of fucoidans with special emphasis on preclinical studies. Independently from their source, fucoidans inhibit several angiogenic regulators, primarily vascular endothelial growth factor (VEGF). A glance towards fucoidans' ongoing clinical trials and pharmacokinetic profile is provided to present the main challenges that still need to be addressed for their bench-to-bedside translation.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología
4.
Pharmaceutics ; 15(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36986780

RESUMEN

Temoporfin (mTHPC) is one of the most promising photosensitizers used in photodynamic therapy (PDT). Despite its clinical use, the lipophilic character of mTHPC still hampers the full exploitation of its potential. Low solubility in water, high tendency to aggregate, and low biocompatibility are the main limitations because they cause poor stability in physiological environments, dark toxicity, and ultimately reduce the generation of reactive oxygen species (ROS). Applying a reverse docking approach, here, we identified a number of blood transport proteins able to bind and disperse monomolecularly mTHPC, namely apohemoglobin, apomyoglobin, hemopexin, and afamin. We validated the computational results synthesizing the mTHPC-apomyoglobin complex (mTHPC@apoMb) and demonstrated that the protein monodisperses mTHPC in a physiological environment. The mTHPC@apoMb complex preserves the imaging properties of the molecule and improves its ability to produce ROS via both type I and type II mechanisms. The effectiveness of photodynamic treatment using the mTHPC@apoMb complex was then demonstrated in vitro. Blood transport proteins can be used as molecular "Trojan horses" in cancer cells by conferring mTHPC (i) water solubility, (ii) monodispersity, and (iii) biocompatibility, ultimately bypassing the current limitations of mTHPC.

5.
Cells ; 12(3)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36766734

RESUMEN

The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/farmacología
6.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36558942

RESUMEN

Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.

7.
Biomolecules ; 13(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671454

RESUMEN

Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fotoquimioterapia , Humanos , Albúmina Sérica Humana , Especies Reactivas de Oxígeno , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
8.
Biomed Pharmacother ; 154: 113662, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36800294

RESUMEN

Ferroptosis induction is an emerging strategy to treat cancer and contrast the tricky issue of chemoresistance, which can arise towards apoptosis. This work elucidates the anticancer mechanisms evoked by perillaldehyde, a monoterpenoid isolated from Ammodaucus leucotrichus Coss. & Dur. We investigated and characterized its antileukemic potential in vitro, disclosing its ability to trigger ferroptosis. Specifically, perillaldehyde induced lipid peroxidation, decreased glutathione peroxidase 4 protein expression, and depleted intracellular glutathione on HL-60 promyelocytic leukemia cells. Besides, it stimulated the active secretion of ATP, one of the most crucial events in the induction of efficient anticancer response, prompting further studies to disclose its possible nature as an immunogenic cell death inducer. To preliminarily assess the clinical relevance of perillaldehyde, we tested its ability to induce cell death on patient-derived acute myeloid leukemia biopsies, recording a similar mechanism of action and potency compared to HL-60 cells. To round the study off, we tested its selectivity towards tumor cells and disclosed lower toxicity on normal cells compared to both HL-60 and acute myeloid leukemia biopsies. Altogether, these data depict a favorable risk-benefit profile for perillaldehyde and reveal its peculiar antileukemic potential, which qualifies this natural product to proceed further through the drug development pipeline.


Asunto(s)
Ferroptosis , Leucemia Mieloide Aguda , Humanos , Línea Celular Tumoral , Monoterpenos/uso terapéutico , Leucemia Mieloide Aguda/metabolismo
9.
Mar Drugs ; 21(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662211

RESUMEN

Marine sponges represent one of the richest sources of natural marine compounds with anticancer potential. Plocabulin (PM060184), a polyketide originally isolated from the sponge Lithoplocamia lithistoides, elicits its main anticancer properties binding tubulin, which still represents one of the most important targets for anticancer drugs. Plocabulin showed potent antitumor activity, in both in vitro and in vivo models of different types of cancers, mediated not only by its antitubulin activity, but also by its ability to block endothelial cell migration and invasion. The objective of this review is to offer a description of plocabulin's mechanisms of action, with special emphasis on the antiangiogenic signals and the latest progress on its development as an anticancer agent.


Asunto(s)
Antineoplásicos , Neoplasias , Policétidos , Poríferos , Animales , Policétidos/farmacología , Policétidos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Pironas/farmacología , Poríferos/química
10.
Nanoscale ; 14(3): 632-641, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34792088

RESUMEN

Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.


Asunto(s)
Neoplasias , Fotoquimioterapia , Bacteriófago M13/genética , Proteínas de la Cápside/genética , Humanos , Neoplasias/tratamiento farmacológico , Péptidos
11.
Eur J Med Chem ; 224: 113733, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364162

RESUMEN

Breast Cancer (BC) is a leading cause of death in women, currently affecting 13% of female population worldwide. First-line clinical treatments against Estrogen Receptor positive (ER+) BC rely on suppressing estrogen production, by inhibiting the aromatase (AR) enzyme, or on blocking estrogen-dependent pro-oncogenic signaling, by targeting Estrogen Receptor (ER) α with selective Modulators/Degraders (SERMs/SERDs). The development of dual acting molecules targeting AR and ERα represents a tantalizing alternative strategy to fight ER + BC, reducing the incidence of adverse effects and resistance onset that limit the effectiveness of these gold-standard therapies. Here, in silico design, synthesis, biological evaluation and an atomic-level characterization of the binding and inhibition mechanism of twelve structurally related drug-candidates enable the discovery of multiple compounds active on both AR and ERα in the sub-µM range. The best drug-candidate 3a displayed a balanced low-nanomolar IC50 towards the two targets, SERM activity and moderate selectivity towards a BC cell line. Moreover, most of the studied compounds reduced ERα levels, suggesting a potential SERD activity. This study dissects the key structural traits needed to obtain optimal dual acting drug-candidates, showing that multitarget compounds may be a viable therapeutic option to counteract ER + BC.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Antagonistas de Estrógenos/uso terapéutico , Antineoplásicos Hormonales/farmacología , Inhibidores de la Aromatasa/farmacología , Antagonistas de Estrógenos/farmacología , Femenino , Humanos
12.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34451835

RESUMEN

We are witnessing a paradigm shift in drug development and clinical practice to fight the novel coronavirus disease (COVID-19), and a number of clinical trials have been or are being testing various pharmacological approaches to counteract viral load and its complications such as cytokine storm. However, data on the effectiveness of antiviral and immune therapies are still inconclusive and inconsistent. As compared to other candidate drugs to treat COVID-19, Janus Kinase (JAK) inhibitors, including baricitinib and ruxolitinib, possess key pharmacological features for a potentially successful repurposing: convenient oral administration, favorable pharmacokinetic profile, multifunctional pharmacodynamics by exerting dual anti-inflammatory and anti-viral effects. Baricitinib, originally approved for rheumatoid arthritis, received Emergency Use Authorization in November 2020 by the Food and Drug Administration in combination with remdesivir for the treatment of COVID-19 in hospitalized patients ≥ 2 years old who require supplemental oxygen, invasive mechanical ventilation, or extracorporeal membrane oxygenation. By July 2021, the European Medicines Agency is also expected to issue the opinion on whether or not to extend its use in hospitalised patients from 10 years of age who require supplemental oxygen. Ruxolitinib, approved for myelofibrosis, was prescribed in patients with COVID-19 within an open-label Emergency Expanded Access Plan. This review will address key milestones in the discovery and use of JAK inhibitors in COVID-19, from artificial intelligence to current clinical evidence, including real world experience, and critically appraise emerging safety issues, namely infections, thrombosis, and liver injury. An outlook to ongoing studies (clinicaltrials.gov) and unpublished pharmacovigilance data is also offered.

13.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207455

RESUMEN

Colorectal cancer (CRC) is a widespread and lethal disease. Relapses of the disease and metastasis are very common in instances of CRC, so adjuvant therapies have a crucial role in its treatment. Systemic toxic effects and the development of resistance during therapy limit the long-term efficacy of existing adjuvant therapeutic approaches. Consequently, the search for alternative strategies is necessary. Photothermal therapy (PTT) represents an innovative treatment for cancer with great potential. Here, we synthesize branched gold nanoparticles (BGNPs) as attractive agents for the photothermal eradication of colon cancer cells. By controlling the NP growth process, large absorption in the first NIR biological window was obtained. The FBS dispersed BGNPs are stable in physiological-like environments and show an extremely efficient light-to-heat conversion capability when irradiated with an 808-nm laser. Sequential cycles of heating and cooling do not affect the BGNP stability. The uptake of BGNPs in colon cancer cells was confirmed using flow cytometry and confocal microscopy, exploiting their intrinsic optical properties. In dark conditions, BGNPs are fully biocompatible and do not compromise cell viability, while an almost complete eradication of colon cancer cells was observed upon incubation with BGNPs and irradiation with an 808-nm laser source. The PTT treatment is characterized by an extremely rapid onset of action that leads to cell membrane rupture by induced hyperthermia, which is the trigger that promotes cancer cell death.

14.
Mar Drugs ; 19(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068184

RESUMEN

The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.


Asunto(s)
Antraquinonas/farmacología , Antraquinonas/toxicidad , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Organismos Acuáticos/química , Animales , Antraquinonas/química , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Mutágenos/química , Mutágenos/farmacología , Mutágenos/toxicidad , Neoplasias/tratamiento farmacológico
15.
Nicotine Tob Res ; 23(12): 2127-2134, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34036368

RESUMEN

INTRODUCTION: Recently, the Food and Drug Administration authorized the marketing of IQOS Tobacco Heating System as a Modified Risk Tobacco Product based on an electronic heat-not-burn technology that purports to reduce the risk. METHODS: Sprague-Dawley rats were exposed in a whole-body mode to IQOS aerosol for 4 weeks. We performed the chemical characterization of IQOS mainstream and we studied the ultrastructural changes in trachea and lung parenchyma of rats exposed to IQOS stick mainstream and tissue pro-inflammatory markers. We investigated the reactive oxygen species amount along with the markers of tissue and DNA oxidative damage. Moreover, we tested the putative genotoxicity of IQOS mainstream through Ames and alkaline Comet mutagenicity assays. RESULTS: Here, we identified irritating and carcinogenic compounds including aldehydes and polycyclic aromatic hydrocarbons in the IQOS mainstream as sign of incomplete combustion and degradation of tobacco, that lead to severe remodelling of smaller and largest rat airways. We demonstrated that IQOS mainstream induces lung enzymes that activate carcinogens, increases tissue reactive radical concentration; promotes oxidative DNA breaks and gene level DNA damage; and stimulates mitogen activated protein kinase pathway which is involved in the conventional tobacco smoke-induced cancer progression. CONCLUSIONS: Collectively, our findings reveal that IQOS causes grave lung damage and promotes factors that increase cancer risk. IMPLICATIONS: IQOS has been proposed as a safer alternative to conventional cigarettes, due to depressed concentration of various harmful constituents typical of traditional tobacco smoke. However, its lower health risks to consumers have yet to be determined. Our findings confirm that IQOS mainstream contains pyrolysis and thermogenic degradation by-products, the same harmful constituents of traditional cigarette smoke, and, for the first time, we show that it causes grave lung damage and promotes factors that increase cancer risk in the animal model.


Asunto(s)
Humo , Productos de Tabaco , Animales , ADN , Pulmón , Ratas , Ratas Sprague-Dawley , Fumar , Nicotiana , Productos de Tabaco/toxicidad
16.
Cancers (Basel) ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008240

RESUMEN

In recent years, natural compounds have emerged as inducers of non-canonical cell death. The isothiocyanate sulforaphane (SFN) is a well-known natural anticancer compound with remarkable pro-apoptotic activity. Its ability to promote non-apoptotic cell-death mechanisms remains poorly investigated. This work aimed to explore the capacity of SFN to induce non-apoptotic cell death modalities. SFN was tested on different acute myeloid leukemia cell lines. The mechanism of cell death was investigated using a multi-parametric approach including fluorescence microscopy, western blotting, and flow cytometry. SFN triggered different cell-death modalities in a dose-dependent manner. At 25 µM, SFN induced caspase-dependent apoptosis and at 50 µM ferroptosis was induced through depletion of glutathione (GSH), decreased GSH peroxidase 4 protein expression, and lipid peroxidation. In contrast, necroptosis was not involved in SFN-induced cell death, as demonstrated by the non-significant increase in phosphorylation of receptor-interacting protein kinase 3 and phosphorylation of the necroptotic effector mixed lineage kinase domain-like pseudokinase. Taken together, our results suggest that the antileukemic activity of SFN can be mediated via both ferroptotic and apoptotic cell death modalities.

17.
Expert Opin Drug Metab Toxicol ; 17(1): 69-85, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33074040

RESUMEN

INTRODUCTION: Chemoprevention of cancer refers to the use of natural or synthetic compounds to abolish or perturb a variety of steps in tumor initiation, promotion, and progression. This can be realized through different mechanisms, including activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. AREAS COVERED: The goal of this article is to critically review recent evidence on association between coffee and prevention of different types of cancer, with particular emphasis on the molecular mechanisms and the bioactive compounds involved in its anticancer activity. EXPERT OPINION: Coffee is a mixture of different compounds able to decrease the risk of many types of cancer. However, its potential anticancer activity is not completely understood. Hundreds of biologically active components such as caffeine, chlorogenic acid, diterpenes are contained in coffee. Further research is needed to fully elucidate the molecular mechanisms underlying the anticancer effects of coffee and fully understand the role of different confounding factors playing a role in its reported anticancer activity.


Asunto(s)
Quimioprevención/métodos , Café/química , Neoplasias/prevención & control , Animales , Cafeína/aislamiento & purificación , Cafeína/farmacología , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Humanos
18.
Toxins (Basel) ; 12(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256185

RESUMEN

The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Benzodioxoles/farmacología , Piper nigrum/química , Piperidinas/farmacología , Extractos Vegetales/farmacología , Alcamidas Poliinsaturadas/farmacología , Animales , Línea Celular Tumoral , Dioxolanos/farmacología , Sinergismo Farmacológico , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Calidad de Vida , Ratas , Semillas/química
19.
Front Pharmacol ; 11: 567, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425794

RESUMEN

The success of cancer therapy is often compromised by the narrow therapeutic index of many anticancer drugs and the occurrence of drug resistance. The association of anticancer therapies with natural compounds is an emerging strategy to improve the pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical found in cruciferous vegetables, targets multiple pathways involved in cancer development, as recorded in different cancers such as breast, brain, blood, colon, lung, prostate, and so forth. As examples to make the potentialities of the association chemotherapy raise, here we highlight and critically analyze the information available for two associations, each composed by a paradigmatic anticancer drug (cisplatin or doxorubicin) and sulforaphane.

20.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540249

RESUMEN

Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Avena/química , Neoplasias/tratamiento farmacológico , ortoaminobenzoatos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA