Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; 140(4): 958-967, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657099

RESUMEN

OBJECTIVE: Intravenous sodium fluorescein (SF) is increasingly used during surgery of gliomas and brain metastases to improve tumor resection. Currently, SF is believed to permeate the brain regions where the blood-brain barrier (BBB) is damaged and to accumulate in the extracellular space but not in tumor or healthy cells, making it possible to demarcate tumor margins to guide resection. By evaluating the immune contexture of a number of freshly resected gliomas and brain metastases from patients undergoing SF-guided surgery, the authors recurrently observed fluorescence-positive cells. Therefore, the aim of this study was to determine if SF accumulates inside the cells of the tumor microenvironment (TME), and if so, in which type of cells, and whether incorporation can also be observed in the leukocytes of peripheral blood. METHODS: Freshly resected tumor specimens were dissociated to single cells and analyzed by multiparametric flow cytometry. Peripheral blood leukocytes, macrophages, and a glioma cell line were treated with SF in vitro, and their cell uptake was assessed by multiparametric and imaging flow cytometry and by confocal microscopy. RESULTS: The ex vivo and in vitro analyses revealed that SF accumulates intracellularly in leukocytes as well as in tumor cells, but with a high variability of incorporation in the different cell subsets analyzed. Myeloid cells showed the highest level of fluorescence. In vitro uptake experiments showed that SF accumulation increases over time. The imaging analyses confirmed the internalization of the compound inside the cells. CONCLUSIONS: SF is not just a marker of BBB damage, but its intracellular detection suggests that it selectively accumulates intracellularly. Future efforts should target the mechanisms of its differential uptake by the different TME cell types in depth.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Fluoresceína , Microambiente Tumoral , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/metabolismo , Encéfalo/patología
2.
Front Immunol ; 14: 1236824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936683

RESUMEN

Introduction: Brain metastases (BrM), which commonly arise in patients with melanoma, breast cancer and lung cancer, are associated with a poor clinical prognosis. In this context, the tumor microenvironment (TME) plays an important role since it either promotes or inhibits tumor progression. Our previous studies have characterized the immunosuppressive microenvironment of glioblastoma (GBM). The aim of this study is to compare the immune profiles of BrM and GBM in order to identify potential differences that may be exploited in their differential treatment. Methods: Tumor and/or blood samples were taken from 20 BrM patients and 19 GBM patients. Multi-parametric flow cytometry was used to evaluate myeloid and lymphoid cells, as well as the expression of immune checkpoints in the TME and blood. In selected cases, the immunosuppressive ability of sorted myeloid cells was tested, and the ex vivo proliferation of myeloid, lymphoid and tumor cell populations was analyzed. Results: High frequencies of myeloid cells dominated both the BrM and GBM landscapes, but a higher presence of tumor-associated macrophages was observed in GBM, while BrM were characterized by a significant presence of tumor-infiltrating lymphocytes. Exhaustion markers were highly expressed in all T cells from both primary and metastatic brain tumors. Ex vivo analysis of the cell cycle of a single sample of a BrM and of a GBM revealed subsets of proliferating tumor cells and blood-derived macrophages, but quiescent resident microglial cells and few proliferating lymphocytes. Macrophages sorted from a single lung BrM exhibited a strong immunosuppressive activity, as previously shown for primary GBM. Finally, a significant expansion of some myeloid cell subsets was observed in the blood of both GBM and BrM patients. Discussion: Our results define the main characteristics of the immune profile of BrM and GBM, which are distinguished by different levels of immunosuppressive myeloid cells and lymphocytes devoid of effector function. Understanding the role of the different cells in establishing the metastatic setting is critical for improving the therapeutic efficacy of new targeted immunotherapy strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patología , Linfocitos T , Linfocitos/metabolismo , Macrófagos , Microambiente Tumoral
3.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944798

RESUMEN

The cell composition of the glioblastoma (GBM) microenvironment depends on the recruitment of myeloid cells from the blood, promoting tumor progression by inducing immunosuppression. This phenomenon hampers immunotherapies and investigating its complexity may help to tailor new treatments. Peripheral blood and tissue specimens from the central and marginal tumor areas were collected from 44 primary and 19 recurrent GBM patients. Myeloid and lymphoid cell subsets and the levels of immunosuppressive markers were defined by multiparametric flow cytometry. Multiplexed immunohistochemistry was used to confirm the differences in the immune infiltrate and to analyze the cell spatial distribution. Relapsing GBM showed an increased presence of blood-derived macrophages in both tumor areas and a higher frequency of infiltrating lymphocytes, with a high level of exhaustion markers. The expansion of some myeloid-derived suppressor cell (MDSC) subsets in the blood was found in both primary and recurrent GBM patients. A significant inverse correlation between infiltrating T cells and an MDSC subset was also found. In patients with recurrent GBM after standard first-line therapy, the immune-hostile tumor microenvironment and the levels of some MDSC subsets in the blood persisted. Analysis of the immune landscape in GBM relapses aids in the definition of more appropriate stratification and treatment.

4.
Dev Biol ; 457(2): 215-225, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30998907

RESUMEN

Therapeutic approaches for cutaneous melanoma are flourishing, but despite promising results, there is an increasing number of reported primary or secondary resistance to the growing sets of drugs approved for therapy in the clinics. Combinatorial approaches may overcome resistance, as they may tackle specific weaknesses of melanoma cells, not sufficient on their own, but effective in combination with other therapies. The transgenic zebrafish line kita:ras develops melanoma with high frequency. At 3 dpf, transgenic kita:ras larvae show a hyperpigmentation phenotype as earliest evidence of abnormal melanocyte growth. Using this model, we performed a chemical screen based on automated detection of a reduction of melanocyte number caused by any of 1280 FDA or EMA approved drugs of the library. The analysis showed that 55 molecules were able to reduce by 60% or more the number of melanocytes per embryo. We further tested two compounds for each of the 5 classes, and a farnesyltransferase inhibitor (Lonafarnib), that inhibits an essential post-translational modification of HRAS and suppresses the hyperpigmentation phenotype. Combinations of Clotrimazole and Lonafarnib showed the most promising results in zebrafish embryos, allowing a dose reduction of both drugs. We performed validation of these observations in the metastatic human melanoma cell line A375M, and in normal human epithelial melanocytes (NHEM) in order to investigate the mechanism of action of Clotrimazole in blocking the proliferation of transformed melanocytes. Viability assay and analysis of energy metabolism in Clotrimazole treated cells show that this drug specifically affects melanoma cells in vitro and transformed melanocytes in vivo, having no effects on NHEM or wild type larvae. Similar effects were observed with another hit of the same class, Miconazole. Furthermore, we show that the effects of Clotrimazole are mediated by the inhibition of hexokinase activity, which is lethal to the abnormal metabolic profile of melanoma cells in vitro and in vivo. Thus, our study shows that the zebrafish can provide a phenotype-rich assay for fully automated screening approaches to identify drugs for synthetic lethal treatment in melanoma and suggest further testing of Clotrimazole in combinatorial treatments.


Asunto(s)
Antineoplásicos/farmacología , Clotrimazol/farmacología , Melanoma/tratamiento farmacológico , Piperidinas/farmacología , Piridinas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales/métodos , Farnesiltransferasa/antagonistas & inhibidores , Humanos , Melanocitos/metabolismo , Melanoma/metabolismo , Miconazol/farmacología , Neoplasias Cutáneas/metabolismo , Pez Cebra , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA