RESUMEN
6,13-Diethynylpentacene derivatives with sterically bulky substituents (Tr*, tris(3,5-di-tert-butylphenyl)methyl groups) appended to the ethynyl moieties at the 6- and 13-positions have been synthesized, as well as derivatives with electron-withdrawing fluorine groups on the 1,2,3,4,8,9,10,11-positions. These molecules are designed to investigate relationships between steric and electronic effects on the stability of pentacene toward endoperoxide formation via reaction with photosensitized oxygen in solution under ambient light (i. e., 'laboratory' conditions). It is evident from the study that stabilization through changes to the electronic characteristics of pentacene are more effective than the incorporation of sterically bulky groups at the acetylenic termini. Selected pentacene derivatives have been made into binary, amorphous films with the fullerene derivative PCBM to investigate the stability imparted by substituents against cycloaddition reactions. Overall, the introduction of steric protection through the incorporation of Tr* groups is not an efficient strategy for enhancing the persistence of pentacenes. Stabilization through fluorination proves successful for extending the lifetime of the pentacene derivatives by an order of magnitude in solution. Notably, the persistence of pentacene derivatives in solution can also be enhanced through the use of ethereal solvents stabilized with butylated hydroxy toluene (BHT) and/or an increased number of trialkylsilyl groups as substituents.
RESUMEN
We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D π-conjugated oligoyne chains is rare given the minimal π-π intermolecular interactions as well as its flexibility that works against self-assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180â K, and is not observed for shorter oligoynes in this series. Cryogenic UV/Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.
RESUMEN
Two isomeric pentacene dimers, each linked by a diamantane spacer, have been synthesized. These dimers are designed to provide experimental evidence to support quantum mechanical calculations, which predict the substitution pattern on the carbon-rich diethynyldiamantane spacer to be decisive in controlling the interpentacene coupling. Intramolecular singlet fission (i-SF) serves as a probe for the existence and strength of the electronic coupling between the two pentacenes, with transient absorption spectroscopy as the method of choice to characterize i-SF. 4,9-Substitution of diamantane provides a pentacene dimer (4,9-dimer) in which the two chromophores are completely decoupled and that, following photoexcitation, deactivates to the ground state analogous to a monomeric pentacene chromophore. Conversely, 1,6-substitution provides a pentacene dimer (1,6-dimer) that exhibits sufficiently strong coupling to drive i-SF, resulting in correlated triplet M(T1T1) yields close to unity and free triplet (T1 + T1) yields of ca. 50%. Thus, the diamantane spacer effectively switches "on" or "off" the coupling between the chromophores, based on the substitution pattern. The binary control of diamantane contrasts other known molecular spacers designed only to modulate the coupling strength between two pentacenes.
RESUMEN
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
RESUMEN
The synthesis and characterization of platinum(II) and palladium(II) complexes bearing two (dimers Pt(Lpc)2Cl2 and Pd(Lpc)2Cl2), one (monomers Pt(Lpc)(Lref)Cl2 and Pd(Lpc)(Lref)Cl2), or no (reference compounds Pt(Lref)2Cl2 and Pd(Lref)2Cl2) pentacene-based pyridyl ligands are presented. Photophysical properties of the dimers are probed by means of steady-state and time-resolved transient absorption measurements in comparison to the monomer and model compounds. Our results document that despite enhanced spin-orbit coupling from the presence of heavy atoms, intramolecular singlet fission (iSF) is not challenged by intersystem crossing. iSF thus yields correlated triplet pairs and even uncorrelated triplet excited states upon decoherence. Importantly, significant separation of the two pentacenyl groups facilitates decoupling of the two chromophores. Furthermore, the mechanism of iSF is altered depending on the respective metal center, that is, Pt(II) versus Pd(II). The dimer based on Pt(II), Pt(Lpc)2Cl2, exhibits a direct pathway for the iSF and forms a correlated triplet pair with singlet-quintet spin-mixing within 10 ns in variable solvents. On the other hand, the dimer based on Pd(II), Pd(Lpc)2Cl2, leads to charge transfer mixing during the population of the correlated triplet pair that is dependent on solvent polarity. Moreover, Pd(Lpc)2Cl2 gives rise to a stable equilibrium between singlet and quintet correlated triplet pairs with lifetimes of up to 170 ns. Inherent differences in the size and polarizability, when contrasting platinum(II) with palladium(II), are the most likely rationale for the underlying trends.
RESUMEN
Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.
RESUMEN
We present an experimental study investigating the solvent-dependent dynamics of a 9,10-bis(phenylethynyl)anthracene monomer, dimer, and trimer. Using transient absorption spectroscopy, we have discovered that triplet excited state formation in the dimer and trimer molecules in polar solvents is a consequence of charge recombination subsequent to symmetry-breaking charge separation rather than singlet fission. Total internal reflection emission measurements of the monomer demonstrate that excimer formation serves as the primary decay pathway at a high concentration. In the case of highly concentrated solutions of the trimer, we observe evidence of triplet formation without the prior formation of a charge-separated state. We postulate that this is attributed to the formation of small aggregates, suggesting that oligomers mimicking the larger chromophore counts in crystals could potentially facilitate singlet fission. Our experimental study sheds light on the intricate dynamics of the 9,10-bis(phenylethynyl)anthracene system, elucidating the role of solvent- and concentration-dependent factors for triplet formation and charge separation.
RESUMEN
The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.
RESUMEN
The formation and study of molecules that model the sp-hybridized carbon allotrope, carbyne, is a challenging field of synthetic physical organic chemistry. The target molecules, oligo- and polyynes, are often the preferred candidates as models for carbyne because they can be formed with monodisperse lengths as well as defined structures. Despite a simple linear structure, the synthesis of polyynes is often far from straightforward, due in large part to a highly conjugated framework that can render both precursors and products highly reactive, i.e., kinetically unstable. The vast majority of polyynes are formed as symmetrical products from terminal alkynes as precursors via an oxidative, acetylenic homocoupling reaction based on the Glaser, Eglinton-Galbraith, and Hay reactions. These reactions are very efficient for the synthesis of shorter polyynes (e.g., hexaynes and octaynes), but yields often drop dramatically as a function of length for longer derivatives, usually starting with the formation of decaynes. The most effective approach to circumvent unstable precursors and products has been through the incorporation of sterically demanding end groups that serve to "protect" the polyyne skeleton. This approach was arguably identified in the early 1950s by Bohlmann and co-workers with the synthesis of tBu-end-capped polyynes. During the next 50 years, a polyyne with 14 contiguous alkyne units remained the longest isolated derivative until 2010, when the record was extended to 22 alkyne units. The record length was broken again in 2020, when a polyyne consisting of 24 alkynes was isolated and characterized. Beyond polyynes, there have been several reports describing the potential synthesis of carbyne, but conclusive characterization and proof of structure have been tenuous. The sole example of synthetic carbyne arises from synthesis within carbon nanotubes, when chains of thousands of sp carbon atoms have been linked to form polydisperse samples of carbyne. Thus, model compounds for carbyne, the polyynes, remain the best means to examine and predict the experimental structure and properties of this carbon allotrope.This Account will discuss the general synthesis of polyynes using homologous series of polyynes with up to 10 alkyne units as examples (decaynes). The limited number of specific syntheses of series with longer polyynes will then be presented and discussed in more detail based on end groups. The monodisperse polyynes produced from these synthetic efforts are then examined toward providing our best extrapolations for the expected characteristics for carbyne based on 13C NMR spectroscopy, UV-vis spectroscopy, X-ray crystallography, and Raman spectroscopy.
Asunto(s)
Nanotubos de Carbono , Poliinos , Humanos , Poliinos/química , Alquinos/química , CarbamatosRESUMEN
We report a general method for the desymmetrization of 6,13-pentacenequinone to access ethynylated pentacene ketones, namely, 13-hydroxy-13-(ethynylated)pentacene-6(13H)-ones. These pentacene ketones ("pentacenones") serve as divergent intermediates to unsymmetrically 6,13-disubstituted pentacenes, commonly used for studying singlet fission processes and charge transport phenomena in organic field effect transistors. We report a synthetic method to access pentacenones, which utilizes a precipitation/crystallization from the crude mixture to enable facile purification on a multigram scale. X-ray crystallographic analysis of the pentacenones reveals key noncovalent interactions that contribute to the crystallization, specifically, hydrogen bonding between the ketone and alcohol functional groups as well as π-π-stacking and dipole-dipole interactions.
RESUMEN
Three pentacene dimers have been synthesized to investigate the effect of molecular rotation and rotational conformations on singlet fission (SF). In all three dimers, the pentacene units are linked by a 1,4-diethynylphenylene spacer that provides almost unimpeded rotational freedom between the pentacene- and phenylene-subunits in the parent dimer. Substituents on the phenylene spacer add varying degrees of steric hindrance that restricts both the rotation and the equilibrium distribution of different conformers; the less restricted conformers exhibit faster SF and more rapid subsequent triplet-pair recombination. Furthermore, the rotational conformers have small shifts in their absorption spectra and this feature has been used to selectively excite different conformers and study the resulting SF. Femtosecond transient absorption studies at 100 K reveal that the same dimer can have orders of magnitude faster SF in a strongly coupled conformer compared to a more weakly coupled one. Measurements in polystyrene further show that the SF rate is nearly independent of viscosity whereas the triplet pair lifetime is considerably longer in a high viscosity medium. The results provide insight into design criteria for maintaining high initial SF rate while suppressing triplet recombination in intramolecular singlet fission.
RESUMEN
We placed two pentacene chromophores at the termini of a diacetylene linker to investigate the impact of excitation wavelength, conformational flexibility, and vibronic coupling on singlet fission. Photoexcitation of the low-energy absorption results in a superposed mixture of states, which transform on an ultrafast time-scale into a spin-correlated and vibronically coupled/hot delocalized triplet pair 1(T1T1)deloc. Regardless of temperature, the lifetime for 1(T1T1)deloc is less than 2 ps. In contrast, photoexcitation of the high-energy absorption results in the formation of 1(T1T1)deloc lasting 1.0 ps, which then decays at room temperature within 4 ps via triplet-triplet annihilation. Lowering the temperature enables 1(T1T1)deloc to delocalize and vibronically decouple, in turn affording 1(T1T1)loc. In addition, our results suggest that the quasi-free rotation at the diacetylene spacer may lead to twisted conformations with very low SF quantum yields, highlighting the need of controlling this structural aspect in the design of new singlet fission active molecules.
RESUMEN
Cyclic tetraaryl[5]cumulenes (1 a-f) have been synthesized and studied as a function of increasing ring strain. The magnitude of ring strain is approximated by the extent of bending of the cumulenic core as assessed by a combination of X-ray crystallographic analysis and DFT calculations. Trends are observed in 13 C NMR, UV-vis, and Raman spectra associated with ring strain, but the effects are small. In particular, the experimental HOMO-LUMO gap is not appreciably affected by bending of the [5]cumulene framework from ca. 174° (λmax =504â nm) in 1 a to ca. 178° (λmax =494â nm) in 1 f.
Asunto(s)
Teoría Cuántica , Espectrometría Raman , Modelos Moleculares , Polienos , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Solution-processed, large-area, and flexible electronics largely relies on the excellent electronic properties of sp2 -hybridized carbon molecules, either in the form of π-conjugated small molecules and polymers or graphene and carbon nanotubes. Carbon with sp-hybridization, the foundation of the elusive allotrope carbyne, offers vast opportunities for functionalized molecules in the form of linear carbon atomic wires (CAWs), with intriguing and even superior predicted electronic properties. While CAWs represent a vibrant field of research, to date, they have only been applied sparingly to molecular devices. The recent observation of the field-effect in microcrystalline cumulenes suggests their potential applications in solution-processed thin-film transistors but concerns surrounding the stability and electronic performance have precluded developments in this direction. In the present study, ideal field-effect characteristics are demonstrated for solution-processed thin films of tetraphenyl[3]cumulene, the shortest semiconducting CAW. Films are deposited through a scalable, large-area, meniscus-coating technique, providing transistors with hole mobilities in excess of 0.1 cm2 V-1 s-1 , as well as promising operational stability under dark conditions. These results offer a solid foundation for the exploitation of a vast class of molecular semiconductors for organic electronics based on sp-hybridized carbon systems and create a previously unexplored paradigm.
RESUMEN
Petroleum asphaltenes are surface-active compounds found in crude oils, and their interactions with surfaces and interfaces have huge implications for many facets of reservoir exploitation, including production, transportation, and oil-water separation. The asphaltene fraction in oil, found in the highest boiling-point range, is composed of many different molecules that vary in size, functionality, and polarity. Studies done on asphaltene fractions have suggested that they interact via polyaromatic and heteroaromatic ring structures and functional groups containing nitrogen, sulfur, and oxygen. However, isolating a single pure chemical structure of asphaltene in abundance is challenging and often not possible, which impairs the molecular-level study of asphaltenes of various architectures on surfaces. Thus, to further the molecular fundamental understanding, we chose to use functionalized model asphaltenes (AcChol-Th, AcChol-Ph, and 1,6-DiEtPy[Bu-Carb]) and model self-assembled monolayer (SAM) surfaces with precisely known chemical structures, whereby the hydrophobicity of the model surface is controlled. We applied solutions of asphaltenes to these SAM surfaces and then analyzed them with surface-sensitive techniques of near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). We observe no adsorption of asphaltenes to the hydrophobic surface. On the hydrophilic surface, AcChol-Ph penetrates into the SAM with a preferential orientation parallel to the surface; AcChol-Th adsorbs in a similar manner, and 1,6-DiEtPy[Bu-Carb] binds the surface with a bent binding geometry. Overall, this study demonstrates the need for studying pure and fractionated asphaltenes at the molecular level, as even within a family of asphaltene congeners, very different surface interactions can occur.
RESUMEN
Asphaltenes comprise the heaviest and least understood fraction of crude petroleum. The asphaltenes are a diverse and complex mixture of organic and organometallic molecules in which most of the molecular constituents are tightly aggregated into more complicated suprastructures. The bulk properties of asphaltenes arise from a broad range of polycyclic aromatics, heteroatoms, and polar functional groups. Despite much analytical effort, the precise molecular architectures of the material remain unresolved. To understand asphaltene characteristics and reactivity, the field has turned to synthetic model compounds that mirror asphaltene structure, aggregation behavior, and thermal chemistry, including the nucleation of coke. Historically, molecular asphaltene modeling was limited to commercial compounds, offering little illumination and few opportunities for hypothesis-driven research. More recently, however, rational molecular design and modern organic synthesis have started to impact this area. This review provides an overview of commercially available model compounds but is principally focused on the design and synthesis of structurally advanced and appropriately functionalized compounds to mimic the physical and chemical behavior of asphaltenes. Efforts to model asphaltene aggregation are briefly discussed, and a prognosis for the field is offered. A referenced tabulation of the synthetic compounds reported to date is provided.
RESUMEN
Due its complementary absorptions in the range of 450 and 600â nm, an energy-donating hexaaryl-subporphyrazine has been linked to a pentacene dimer, which acts primarily as an energy acceptor and secondarily as a singlet fission enabler. In the corresponding conjugate, efficient intramolecular Förster resonance energy transfer (i-FRET) is the modus operandi to transfer energy from the subporphyrazine to the pentacene dimer. Upon energy transfer, the pentacene dimer undergoes intramolecular singlet fission (i-SF), that is, converting the singlet excited state, via an intermediate state, into a pair of correlated triplet excited states. Solvatochromic fluorescence of the subporphyrazine is a key feature of this system and features a red-shift as large as 20â nm in polar media. Solvent is thus used to modulate spectral overlap between the fluorescence of subporphyrazine and absorption of the pentacene dimer, which controls the Förster rate constant, on one hand, and the triplet quantum yield, on the other hand. The optimum spectral overlap is realized in xylene, leading to Förster rate constant of 3.52×1011 â s-1 and a triplet quantum yield of 171 % ±10 %. In short, the solvent polarity dependence, which is a unique feature of subporphyrazines, is decisive in terms of adjusting spectral overlap, ensuring a sizable Förster rate constant, and maximizing triplet quantum yields. Uniquely, this optimization can be achieved without a need for synthetic modification of the subporphyrazine donor.
RESUMEN
In contrast to previous work, the synergy between panchromatic absorption and molecular singlet fission (SF) is exploited to optimize solar energy conversion through evaluation of the distance dependence of intramolecular Förster Resonance Energy Transfer (i-FRET) in a series of subphthalocyanines (SubPcs) linked to pentacene dimers (Pnc2s). To provide control over i-FRET, the molecular spacer rather than the energy donating SubPc is tailored in the corresponding SubPc-Pnc2 conjugates in terms of length (i.e., the number of aryl units) and flexibility (i.e., presence or absence of a CH2 group). AM1-CIS calculations support the experiments, which underline the importance of the molecular spacer to impact not only the i-FRET dynamics, but also the dynamics of intramolecular singlet fission (i-SF). For example, an additional phenyl group slows down both i-FRET and i-SF by a factor of â¼3.8 and â¼1.6, respectively, by a quinone-like conjugation pattern that affords a pentacene acceptor orbital that is fairly delocalized over both pentacenes and the bridging phenyl.
RESUMEN
The versatility of carbon is revealed in its all-carbon forms (allotropes), which feature unique properties (consider the differences between diamond, graphite, graphene and fullerenes). Beyond natural sources, there are many opportunities to expand the realm of carbon chemistry through the study of new carbon forms. In this work, the synthesis of oligo-/polyynes is used to model the elusive carbyne. The chemical stabilization of oligoynes by sterically encumbered endgroups, particularly the 3,5-bis(3,5-di-tert-butylphenyl)pyridyl group, is key to assemble an extended series of stable oligoynes. The final member of this series is the longest monodisperse polyyne isolated and characterized so far, featuring 24 contiguous alkyne units (48 carbons). Spectroscopic and X-ray crystallographic analysis show that endgroups influence the properties of oligoyne derivatives, but this effect diminishes as length increases toward the polyyne/carbyne limit. For instance, with ultraviolet-visible spectroscopy, molecular symmetry clearly documents the evolution of characteristics from oligoynes to polyynes (in which endgroup effects are absent). The combined experimental data are used to refine predictions for the D∞h structure of carbyne.