Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Astron Astrophys ; 6302019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32699429

RESUMEN

CONTEXT: Pre-equinox measurements of comet 67P/Churyumov-Gerasimenko with the mass spectrometer ROSINA/DFMS on board the Rosetta spacecraft revealed a strongly heterogeneous coma. The abundances of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time variability of coma species remained consistent for about three months up to equinox. The chemical variability could be generally interpreted in terms of surface temperature and seasonal effects superposed on some kind of chemical heterogeneity of the nucleus. AIMS: We compare here pre-equinox (inbound) ROSINA/DFMS measurements from 2014 to measurements taken after the outbound equinox in 2016, both at heliocentric distances larger than 3 AU. For a direct comparison we limit our observations to the southern hemisphere. METHODS: We report the similarities and differences in the concentrations and time variability of neutral species under similar insolation conditions (heliocentric distance and season) pre- and post-equinox, and interpret them in light of the previously published observations. In addition, we extend both the pre- and post-equinox analysis by comparing species concentrations with a mixture of CO2 and H2O. RESULTS: Our results show significant changes in the abundances of neutral species in the coma from pre- to post-equinox that are indicative of seasonally driven nucleus heterogeneity. CONCLUSIONS: The observed pre- and post-equinox patterns can generally be explained by the strong erosion in the southern hemisphere that moves volatile-rich layers near the surface.

2.
Science ; 356(6342): 1069-1072, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28596364

RESUMEN

The origin of cometary matter and the potential contribution of comets to inner-planet atmospheres are long-standing problems. During a series of dedicated low-altitude orbits, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) on the Rosetta spacecraft analyzed the isotopes of xenon in the coma of comet 67P/Churyumov-Gerasimenko. The xenon isotopic composition shows deficits in heavy xenon isotopes and matches that of a primordial atmospheric component. The present-day Earth atmosphere contains 22 ± 5% cometary xenon, in addition to chondritic (or solar) xenon.

3.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28554973

RESUMEN

The European Rosetta mission has been following comet 67P/Churyumov-Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D2O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H2O], [D2O]/[HDO] and [HDS]/[H2S] derived from our measurements are (1.05 ± 0.14) × 10-3, (1.80 ± 0.9) × 10-2 and (1.2 ± 0.3) × 10-3, respectively. These results yield a very high ratio of 17 for [D2O]/[HDO] relative to [HDO]/[H2O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H2S] ratio is compatible with upper limits determined in low-mass star-forming regions and also points to a direct correlation of cometary H2S with presolar grain surface chemistry.This article is part of the themed issue 'Cometary science after Rosetta'.

4.
Nature ; 526(7575): 678-81, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26511578

RESUMEN

The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.


Asunto(s)
Meteoroides , Oxígeno/análisis , Monóxido de Carbono/análisis , Medio Ambiente Extraterrestre/química , Hielo/análisis , Nitrógeno/análisis , Oxígeno/efectos de la radiación , Fotólisis , Sistema Solar/química , Nave Espacial , Agua/análisis
5.
Science ; 348(6231): 232-5, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25791084

RESUMEN

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70 ± 0.66) × 10(-3) (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

6.
Science ; 347(6220): aaa0276, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613892

RESUMEN

Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.

7.
Geophys Res Lett ; 42(13): 5125-5131, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-27656008

RESUMEN

As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H- ions in the solar wind by double charge exchange with molecules in the coma.

8.
Science ; 347(6220): 1261952, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25501976

RESUMEN

The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth's oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency's Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10(-4)­that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean-like water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA