RESUMEN
Microscopic examination is one of the important identification methods for crude drug test described in the 18th Japanese Pharmacopoeia. This method is useful for identification because it can be used for small amounts of samples regardless of their storage conditions; however, this method requires a lot of technical skill in sectioning intricate and/or small samples and is time-consuming. High-resolution X-ray computed tomography (HRXCT) is a novel method for observing the internal morphology of materials. Previously, we used HRXCT to visualize the internal morphology of the Ephedra Herb, obtaining observations that closely match those obtained via microscopic examination. HRXCT employs a low-energy X-ray source and the permeation distance of the X-rays is very short. Therefore, HRXCT can be used for elucidating the morphology of small herbal medicines. In this study, Artemisia Capillaris Flower (capitulum with a diameter of approximately 2 mm) and Plantago Seed (seeds with a length of approximately 2 mm) were examined. The results showed that HRXCT examination was sufficient to illustrate the internal independent organs of Artemisia Capillaris Flower and that their inflorescences remained intact. When observing Plantago Seed, the internal morphology of more than one seed can be depicted simultaneously. Therefore, observation using HRXCT was easy, simple, and effective to illustrate the internal morphology of herbal medicines, which is typically time-consuming and requires advanced microscopy skills.
RESUMEN
Henna is a plant-based dye obtained from the powdered leaf of the pigmented plant Lawsonia inermis, and has often been used for grey hair dyeing, treatment, and body painting. As a henna product, the leaves of Indigofera tinctoria and Cassia auriculata can be blended to produce different colour variations. Although allergy from henna products attributed to p-phenylenediamine, which is added to enhance the dye, is reported occasionally, raw material plants of henna products could also contribute to the allergy. In this study, we reported that raw material plants of commercial henna products distributed in Japan can be estimated by LC-high resolution MS (LC-HRMS) and multivariate analysis. Principal Component Analysis (PCA) score plot clearly separated 17 samples into three groups [I; henna, II; blended henna primarily comprising Indigofera tinctoria, III; Cassia auriculata]. This grouping was consistent with the ingredient lists of products except that one sample listed as henna was classified as Group III, indicating that its ingredient label may differ from the actual formulation. The ingredients characteristic to Groups I, II, and III by PCA were lawsone (1), indirubin (2), and rutin (3), respectively, which were reported to be contained in each plant as ingredients. Therefore, henna products can be considered to have been manufactured from these plants. This study is the first to estimate raw material plants used in commercial plant-based dye by LC-HRMS and multivariate analysis.
Asunto(s)
Espectrometría de Masas , Análisis Multivariante , Hojas de la Planta/química , Lawsonia (Planta)/química , Indigofera/química , Colorantes/química , Colorantes/análisis , Cassia/química , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Análisis de Componente Principal , Naftoquinonas/química , Naftoquinonas/análisis , Estructura MolecularRESUMEN
The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.
Asunto(s)
Ranitidina , Ranitidina/química , Cristalización , Estructura Molecular , ElectronesRESUMEN
A novel trimeric monoterpenoid indole alkaloid, vincarostine A (1) consisting of an aspidosperma-iboga-aspidosperma type skeleton, was isolated from the whole plant of Catharanthus roseus. The structure including absolute stereochemistry was elucidated on the basis of 2D NMR data and CD spectrum. Vincarostine A (1) showed anti-malarial activity.
Asunto(s)
Antimaláricos , Catharanthus , Alcaloides de Triptamina Secologanina , Catharanthus/química , Antimaláricos/química , Antimaláricos/farmacología , Estructura Molecular , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Plasmodium falciparum/efectos de los fármacos , Extractos Vegetales/químicaRESUMEN
Quantitative NMR (qNMR), particularly 1H-qNMR, is useful for determining the absolute purity of organic molecules. However, identifying the target signal(s) for quantification is difficult, because of the overlap and complexity of organic molecules. Therefore, we focused on the 31P nucleus, owing to the simplicity of its signals, and investigated the 31P-qNMR absolute determination method by using organophosphorus drugs, water-soluble cyclophosphamide hydrate (CP), and water-insoluble sofosbuvir (SOF). The optimized and reproducible 31P-qNMR conditions, such as qNMR sample preparation [i.e., selecting suitable deuterated solvents and a reference standard (RS) for 31P-qNMR], hygroscopicity and solution stability of the analyte and RS, and qNMR measurements-such as acquisition time, relaxation delay time, and spectral width-were examined. The CP purities determined using 31P-qNMR agreed well with those for the established 1H-qNMR method in D2O. In contrast, the SOF purity determined using 31P-qNMR was 1.6% higher than that for 1H-qNMR in the protic solvent CD3OD. Therefore, using a protic solvent, such as CD3OD, was not suitable for 31P-qNMR; the deuterium exchange with the RS for 31P-qNMR (i.e., phosphonoacetic acid) resulted in a small integrated intensity. Consequently, the aprotic solvent DMSO-d6 was employed to determine the SOF purity. The data revealed that the SOF purities determined using 31P-qNMR agreed well with the established 1H-qNMR values, indicating that the absolute quantification of SOF using both 31P-qNMR and 1H-qNMR is possible in DMSO-d6. Thus, we established an optimized and reproducible 31P-qNMR method in validation study across multiple laboratories.
Asunto(s)
Dimetilsulfóxido , Compuestos Organofosforados , Agua , Solventes , Preparaciones FarmacéuticasRESUMEN
A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.
Asunto(s)
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismoRESUMEN
The recent discovery of N-nitrosodimethylamine (NDMA), a mutagenic N-nitrosamine, in pharmaceuticals has adversely impacted the global supply of relevant pharmaceutical products. Contamination by N-nitrosamines diverts resources and time from research and development or pharmaceutical production, representing a bottleneck in drug development. Therefore, predicting the risk of N-nitrosamine contamination is an important step in preventing pharmaceutical contamination by DNA-reactive impurities for the production of high-quality pharmaceuticals. In this study, we first predicted the degradation pathways and impurities of model pharmaceuticals, namely gliclazide and indapamide, in silico using an expert-knowledge software. Second, we verified the prediction results with a demonstration test, which confirmed that N-nitrosamines formed from the degradation of gliclazide and indapamide in the presence of hydrogen peroxide, especially under alkaline conditions. Furthermore, the pathways by which degradation products formed were determined using ranitidine, a compound previously demonstrated to generate NDMA. The prediction indicated that a ranitidine-related compound served as a potential source of nitroso groups for NDMA formation. In silico software is expected to be useful for developing methods to assess the risk of N-nitrosamine formation from pharmaceuticals.
Asunto(s)
Gliclazida , Indapamida , Nitrosaminas , Ranitidina , Dimetilnitrosamina , Preparaciones FarmacéuticasRESUMEN
The spectrum of 31P-NMR is fundamentally simpler than that of 1H-NMR; consequently identifying the target signal(s) for quantitation is simpler using quantitative 31P-NMR (31P-qNMR) than using quantitative 1H-NMR (1H-qNMR), which has been already established as an absolute determination method. We have previously reported a 31P-qNMR method for the absolute determination of cyclophosphamide hydrate and sofosbuvir as water-soluble and water-insoluble organophosphorus compounds, respectively. This study introduces the purity determination of brigatinib (BR), an organophosphorus compound with limited water solubility, using 31P-qNMR at multiple laboratories. Phosphonoacetic acid (PAA) and 1,4-BTMSB-d4 were selected as the reference standards (RSs) for 31P-qNMR and 1H-qNMR, respectively. The qNMR solvents were chosen based on the solubilities of BR and the RSs for qNMR. CD3OH was selected as the solvent for 31P-qNMR measurements to prevent the influence of deuterium exchange caused by the presence of exchangeable intramolecular protons of BR and PAA on the quantitative values, while CD3OD was the solvent of choice for the 1H-qNMR measurements to prevent the influence of water signals and the exchangeable intramolecular protons of BR and PAA. The mean purity of BR determined by 31P-qNMR was 97.94 ± 0.69%, which was in agreement with that determined by 1H-qNMR (97.26 ± 0.71%), thus indicating the feasibility of purity determination of BR by 31P-qNMR. Therefore, the findings of this study may provide an effective method that is simpler than conventional 1H-qNMR for the determination of organophosphorus compounds.
Asunto(s)
Compuestos Organofosforados , Protones , Estándares de Referencia , Agua , SolventesRESUMEN
Recently, a novel quantitative method using relative molar sensitivity (RMS) was applied to quantify the ingredients of drugs and foods. An important development in this regard can be observed in the Japanese Pharmacopoeia (JP) 18, where the quantification of perillaldehyde, an unstable compound, in crude drug "Perilla Herb," was revised to incorporate the RMS method. In this study, the primary objective was to improve the tester safety and reduce the amount of reagents used in the JP test. To achieve this, the quantification of three toxic Aconitum monoester alkaloids (AMAs) was explored using the RMS method, employing a single reference compound for all three targets. These AMAs, namely benzoylmesaconine hydrochloride, benzoylhypaconine hydrochloride, and 14-anisoylaconine hydrochloride, which are the quantitative compounds of Kampo extracts containing Aconite Root (AR), were quantified using the reference compound benzoic acid (BA). Reliable RMS values were obtained using both 1H-quantitative NMR and HPLC/UV. Using the RMS of three AMAs relative to the BA, the AMA content (%) in commercial AMAs quantitative reagents were determined without analytical standards. Moreover, the quantitative values of AMAs using the RMS method and the calibration curve method using the three analytical standards were similar. Additionally, similar values were achieved for the three AMAs in the Kampo extracts containing AR using the RMS and the modified JP18 calibration curve methods. These results suggest that the RMS method is suitable for quantitative assays of the Kampo extracts containing AR and can serve as an alternative to the current method specified in the JP18.
Asunto(s)
Aconitum , Alcaloides , Preparaciones de Plantas , Aconitum/química , Alcaloides/química , Cromatografía Líquida de Alta Presión/métodos , Preparaciones de Plantas/químicaRESUMEN
The Japanese Pharmacopoeia (JP) is an official normative publication for establishing the authenticity and properties and maintaining the quality of pharmaceutical products in Japan. The JP is revised every five years and partially revised in order to respond to the progress of science and technology, the demand for medical care, and international harmonization. Thus, "Internationalization of the JP" is one of the most important issues to address for the revision of the JP, which is also referred to the basic principles for the preparation of the JP 19th edition. For instance, the incorporation of the test methods that have been used in other pharmacopeias, such as the European Pharmacopoeia (EP) and the United States Pharmacopeia (USP), into the JP is one of promising approaches. From this perspective, we have recently reported changes in test methods, establishment of a quantitative test method for the JP-listed clonidine hydrochloride as well as lorazepam from using a potentiometric titration method to using HPLC method. As our ongoing study to change test methods for internationalization, we selected sodium cromoglicate and trihexyphenidyl hydrochloride. Each pharmaceutical product is analyzed using a potentiometric titration method as listed in the 18th JP; however, both the EP and the USP use HPLC method for quantitative analysis of these drugs. In this study, we synthesized the related impurities of sodium cromoglicate and trihexyphenidyl hydrochloride listed in the EP and determined their purities using quantitative NMR. The separation conditions of these compounds were examined using HPLC and simultaneous analyses were performed.
Asunto(s)
Cromolin Sódico , Trihexifenidilo , Cromatografía Líquida de Alta Presión , Clonidina , Cromolin Sódico/normas , Trihexifenidilo/normasRESUMEN
We report for the first time that ephedrine alkaloids-free Ephedra Herb extract (EFE) directly inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and that the addition of EFE to the culture medium before viral infection reduces virus titers in the culture supernatant of SARS-CoV-2, including those of variant strains, by more than 99%, 24 h after infection. The addition of Ephedra Herb macromolecule condensed-tannin, which is the main active ingredient responsible for the anticancer, pain suppression, and anti-influenza effects of EFE, similarly suppressed virus production in the culture supernatant by 99% before infection and by more than 90% after infection. Since EFE does not have the side effects caused by ephedrine alkaloids, such as hypertension, palpitations, and insomnia, our results showed the potential of EFE as a safe therapeutic agent against coronavirus disease 2019.
RESUMEN
AIM: Drug-induced liver injury (DILI) is a severe and life-threatening immune-mediated adverse effect, occurring rarely among treated patients. We examined genomic biomarkers in the Japanese population that predict the onset of DILI after using a certain class of drugs, such as Kampo products (Japanese traditional medicines). METHODS: A total of 287 patients diagnosed as DILI by hepatology specialists were recruited after written informed consent was obtained. A genome-wide association analysis and human leukocyte antigen (HLA) typing in four digits were performed. RESULTS: We found a significant association (p = 9.41 × 10-10 ) of rs146644517 (G > A) with Kampo product-related DILI. As this polymorphism is located in the HLA region, we evaluated the association of HLA types and found that 12 (63.2%) of 19 Kampo-DILI patients contained HLA-B*35:01, whereas only 15.2% were positive for this HLA among healthy volunteers. The odds ratio was 9.56 (95% confidence interval 3.75-24.46; p = 2.98 × 10-6 , corrected p = 4.17 × 10-5 ), and it increased to 13.55 compared with the DILI patients not exposed to Kampo products. The individual crude drug components in the Kampo products, including Scutellaria root (ougon in Japanese), rhubarb (daiou), Gardenia fruit (sanshishi), and Glycyrrhiza (kanzou), were significantly associated with HLA-B*35:01. CONCLUSIONS: HLA-B*35:01 is a genetic risk factor and a potential predictive biomarker for Kampo-induced DILI in the Japanese population.
RESUMEN
High-resolution cryogenic transmission electron microscopy (cryo-TEM) evidenced that doxorubicin sulfate crystals in liposomes (prepared by remote loading with ammonium sulfate) form folded, undulating, and fibrous crystals with a diameter of approximately 2.4 nm. An undulating, fibrous crystal considered to be undergrowth, in addition to bundles of fibrous crystals, was also observed in doxorubicin-loaded liposomes. This explains the validity of the formation of doxorubicin sulfate crystals of various shapes, e.g., curved, U-shaped, or circular, in addition to cylinder and/or rod-like crystals reported in the literature. Liposomes that do not contain crystals have inner aqueous phases with high electron density, suggesting that the doxorubicin is remotely loaded and remains as a solute without precipitation.
Asunto(s)
Liposomas , Sulfatos , Doxorrubicina/farmacologíaRESUMEN
We examined ammonium glycyrrhizate listed in the monographs of the European Pharmacopoeia (EP) and United States Pharmacopoeia (USP) as well as in the reagents and solutions used in the general test of the Japanese Pharmacopoeia by performing HPLC on their sample standards or reference reagents under reported and modified conditions. Comparative experiments involving five authentic samples, namely, 18ß-glycyrrhizin (1), 18α-glycyrrhizin (2), licorice-saponin G2 (3), licorice-saponin H2 (4), and galacturonic acid-replaced glycyrrhizin (the 4â³-epimer of 18ß-glycyrrhizin) (5), led us to propose the revision of the peak assignment of 18α-glycyrrhizin (2) and postscript a possible co-existence of galacturonic acid-replaced glycyrrhizin (5) as a hidden component in the EP and USP. We also proposed that the α-configuration used in the nomenclature of the glycosidic bond between aglycone and the sugar units of ammonium glycyrrhizate and impurities in the EP and USP should be revised to the ß-configuration.
Asunto(s)
Compuestos de Amonio , Ácido Glicirrínico , Cromatografía Líquida de Alta Presión , Europa (Continente) , Japón , Estados UnidosRESUMEN
Understanding the characteristics of crystal polymorphism of active pharmaceutical ingredients and analyzing them with high sensitivity is important for quality of drug products, appropriate characterization strategies, and appropriate screening and selection processes. However, there are few methods to measure intra- and intermolecular correlations in crystals other than X-ray crystallography, for which it is sometimes difficult to obtain suitable single crystals. Recently, solid-state NMR has been recognized as a straightforward method for measuring molecular correlations. In this study, we selected ranitidine hydrochloride, which is known to exist in two forms, 1 and 2, as the model drug and investigated each form using solid-state NMR. In conducting the analysis, rotating the sample tube, which had a 1-mm inner diameter, increased the solid-state NMR resolution at 70 kHz. The 1H-14N dipolar-based heteronuclear multiple quantum coherence (D-HMQC) analysis revealed the intermolecular correlation of Form 1 between the N atom of the nitro group and a proton of the furan moiety, which were closer than those of the intramolecular correlation reported using single X-ray crystal analysis. Thus, 1H-14N D-HMQC analysis could be useful for characterizing intermolecular interaction in ranitidine hydrochloride crystals. In addition, we reassigned the 13C solid-state NMR signals of ranitidine hydrochloride according to the liquid-state and multiple solid-state NMR experiments.
Asunto(s)
Protones , Ranitidina , Ranitidina/química , Espectroscopía de Resonancia Magnética/métodos , Cristalografía por Rayos X , Imagen por Resonancia MagnéticaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: In our previous study, we reported that Ephedra Herb extract (EHE) increased the locomotor activity of mice in the open-field test and reduced the immobility time in the forced swim test. Ephedrine alkaloids (EAs) are thought to be responsible for the adverse effects of Ephedra Herb. However, there are no reports to verify that the adverse effects of Ephedra Herb are caused by the amount of EAs in the herb. Therefore, we investigated whether these adverse effects of EHE are caused by the amounts of ephedrine (Eph) and pseudoephedrine (Pse) in the herbal extract. In a preliminary study of the time course analysis of the open field test, we newly observed that EHE evoked switching from transient sedation to sustained excitement. AIM OF THE STUDY: We aimed to confirm whether EHE evokes switching from transient sedation to sustained excitement, investigate whether these actions of EHE are caused by the amount of ephedrine (Eph) and pseudoephedrine (Pse) in the herbal extract, and clarify the molecular mechanism of the transient sedative effect. MATERIALS AND METHODS: The locomotor activity of mice was tested using the open-field test. The immobility times were measured using a forced swim test, and the motor dysfunction in mice was tested using the rotarod test. RESULTS: EHE, Eph, and Pse induced transient motionlessness between 0 and 15 min after oral administration, however, they did not induce depression-like behavior and motor dysfunction in mice, suggesting that the motionlessness induced by EHE, Eph, or Pse resulted from sedation. The α2a adrenoceptor inhibitor, atipamezole, decreased their sedative effects. Thus, immediately after EHE administration, the transient sedative effect is mediated through the activation of the α2a adrenoreceptor by Eph and Pse. EHE and Eph increased total locomotor activity for 15-120 min after oral administration; however, Pse had no effect. Therefore, the slow-onset and sustained excitatory effects of EHE are mediated by Eph. CONCLUSIONS: We discovered for the first time that EHE evokes diphasic action by switching from transient sedation to sustained excitement. The transient sedation was evoked by the Eph and Pse in the herbal extract via activation of the α2a adrenoceptor and the sustained excitement was caused by the Eph in the herbal extract.
Asunto(s)
Alcaloides , Ephedra , Ratones , Animales , Ephedra/química , Efedrina/farmacología , Seudoefedrina , Alcaloides/química , Extractos Vegetales/química , Hipnóticos y Sedantes/farmacología , Receptores AdrenérgicosRESUMEN
Twenty-two flavonoids were isolated from the leaves and stems of Sedum japonicum subsp. oryzifolium (Crassulaceae). Of these compounds, five flavonoids were reported in nature for the first time, and identified as herbacetin 3-O-xyloside-8-O-glucoside, herbacetin 3-O-glucoside-8-O-(2'''-acetylxyloside), gossypetin 3-O-glucoside-8-O-arabinoside, gossypetin 3-O-glucoside-8-O-(2'''-acetylxyloside) and hibiscetin 3-O-glucoside-8-O-arabinoside via UV, HR-MS, LC-MS, acid hydrolysis and NMR. Other seventeen known flavonoids were identified as herbacetin 3-O-glucoside-8-O-arabinoside, herbacetin 3-O-glucoside-8-O-xyloside, gossypetin 3-O-glucoside-8-O-xyloside, quercetin, quercetin 3-O-glucoside, quercetin 3-O-xylosyl-(1â2)-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-glucoside, kaempferol, kaempferol 3-O-glucoside, kaempferol 7-O-rhamnoside, kaempferol 3,7-di-O-rhamnoside, kaempferol 3-O-glucoside-7-O-rhamnoside, kaempferol 3-O-glucosyl-(1â2)-rhamnoside-7-O-rhamnoside, kaempferol 3-O-xylosyl-(1â2)-rhamnoside, kaempferol 3-O-xylosyl-(1â2)-rhamnoside-7-O-rhamnoside, myricetin 3-O-glucoside and cyanidin 3-O-glucoside. Some flavonol 3,8-di-O-glycosides were found in Sedum japonicum subsp. oryzifolium as major flavonoids in this survey. They were presumed to be the diagnostic flavonoids in the species. Flavonoids were reported from S. japonicum for the first time.
Asunto(s)
Crassulaceae , Sedum , Quempferoles , Quercetina/química , Flavonoides/química , Glucósidos/química , Glicósidos/químicaRESUMEN
Quantitative 1H-NMR (1H-qNMR) is useful for determining the absolute purity of organic molecules; however, it is sometimes difficult to identify the target signal(s) for quantitation because of their overlap and complexity. Therefore, we focused on the 31P nucleus because of the simplicity of its signals and previously reported 31P-qNMR in D2O. Here we report 31P-qNMR of an organophosphorus compound, sofosbuvir (SOF), which is soluble in organic solvents. Phosphonoacetic acid (PAA) and 1,4-bis(trimethylsilyl)benzene-d4 (1,4-BTMSB-d4) were used as reference standards for 31P-qNMR and 1H-qNMR, respectively, in methanol-d4. The purity of SOF determined by 31P-qNMR was 100.63 ± 0.95%, whereas that determined by 1H-qNMR was 99.07 ± 0.50%. The average half bandwidths of the 31P signal of PAA and SOF were 3.38 ± 2.39 and 2.22 ± 0.19 Hz, respectively, suggesting that the T2 relaxation time of the PAA signal was shorter than that of SOF and varied among test laboratories. This difference most likely arose from the instability in the chemical shift due to the deuterium exchange of the acidic protons of PAA, which decreased the integrated intensity of the PAA signal. Next, an aprotic solvent, dimethyl sulfoxide-d6 (DMSO-d6), was used as the dissolving solvent with PAA and sodium 4,4-dimethyl-4-silapentanesulfonate-d6 (DSS-d6) as reference standards for 31P-qNMR and 1H-qNMR, respectively. SOF purities determined by 31P-qNMR and 1H-qNMR were 99.10 ± 0.30 and 99.44 ± 0.29%, respectively. SOF purities determined by 31P-qNMR agreed with the established 1H-qNMR values, suggesting that an aprotic solvent is preferable for 31P-qNMR because it is unnecessary to consider the effect of deuterium exchange.
Asunto(s)
Imagen por Resonancia Magnética , Sofosbuvir , Deuterio , Espectroscopía de Resonancia Magnética , Estándares de Referencia , SolventesRESUMEN
Particular batches of Moderna mRNA Coronavirus Disease 2019 (COVID-19) vaccine were recalled after foreign particles were found in some vaccine vials at the vaccination site in Japan in August 2021. We investigated the foreign particles at the request of the Ministry of Health, Labour and Welfare. Energy dispersive X-ray spectroscopy analysis suggested that the foreign particles found in the vials recalled from the vaccination sites were from stainless steel SUS 316L, which was in line with the findings of the root cause investigation by the manufacturer. The sizes of the observed particles ranged from <50 µm to 548 µm in the major axis. Similar foreign particles were also detected in 2 of the 5 vaccine vials of the same lot stored by the manufacturer, indicating that the foreign particles have already been administered to some people via vaccine. Observation of the vials of the same lot by digital microscope found smaller particles those were not detected by visual inspection, suggesting that more vials were affected. Contrarily, visual inspection and subvisible particulate matter test indicated no foreign particles in the vials of normal lots. Possible root cause and strategies to prevent such a deviation were discussed from technical and regulatory aspects.