Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Med ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671240

RESUMEN

Bispecific T cell engagers (BiTEs) kill B cells by engaging T cells. BiTEs are highly effective in acute lymphoblastic leukemia. Here we treated six patients with multidrug-resistant rheumatoid arthritis (RA) with the CD19xCD3 BiTE blinatumomab under compassionate use. Low doses of blinatumomab led to B cell depletion and concomitant decrease of T cells, documenting their engager function. Treatment was safe, with brief increase in body temperature and acute phase proteins during first infusion but no signs of clinically relevant cytokine-release syndrome. Blinatumomab led to a rapid decline in RA clinical disease activity in all patients, improved synovitis in ultrasound and FAPI-PET-CT and reduced autoantibodies. High-dimensional flow cytometry analysis of B cells documented an immune reset with depletion of activated memory B cells, which were replaced by nonclass-switched IgD-positive naïve B cells. Together, these data suggest the feasibility and potential for BiTEs to treat RA. This approach warrants further exploration on other B-cell-mediated autoimmune diseases.

2.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
3.
Elife ; 132024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526524

RESUMEN

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Asunto(s)
Hematopoyesis , Macrófagos , Animales , Ratones , Hematopoyesis/genética , Células Madre Hematopoyéticas , Diferenciación Celular , Eritropoyesis , Hígado , Nicho de Células Madre/genética
4.
Annu Rev Pathol ; 19: 43-67, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37722698

RESUMEN

Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.


Asunto(s)
Inflamación , Humanos , Reproducibilidad de los Resultados
5.
Methods Mol Biol ; 2713: 323-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639133

RESUMEN

Resident tissue macrophages (RTMs) are specialized phagocytes that are widely distributed throughout the body and are responsible for maintaining homeostasis. Recent advances in experimental techniques have enabled us to gain a greater insight into the actual in vivo biology of RTMs by observing their spatiotemporal dynamics directly in their native environment. Here, we detail a method for live tracking macrophages in a prototypical stromal tissue with high spatial and temporal resolution and great experimental versatility. Our approach builds on a custom intravital imaging platform and straightforward surgical preparation to gain access to an intact stromal compartment in order to analyze the morphological and behavioral dynamics of RTMs at single-cell resolution before and after experimental intervention. Furthermore, our versatile approach can also be utilized for live visualization of intracellular signaling and even for tracking cell organelles at subcellular resolution, and can be combined with downstream analyses such as multiplex confocal imaging, providing a unique insight into macrophage biology in vivo.


Asunto(s)
Macrófagos , Fagocitos , Humanos , Diagnóstico por Imagen , Homeostasis , Cuidados Preoperatorios
6.
Gut ; 72(11): 2081-2094, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541770

RESUMEN

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamación/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo
8.
J Exp Med ; 220(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36976180

RESUMEN

Clodronate liposomes (Clo-Lip) have been widely used to deplete mononuclear phagocytes (MoPh) to study the function of these cells in vivo. Here, we revisited the effects of Clo-Lip together with genetic models of MoPh deficiency, revealing that Clo-Lip exert their anti-inflammatory effects independent of MoPh. Notably, not only MoPh but also polymorphonuclear neutrophils (PMN) ingested Clo-Lip in vivo, which resulted in their functional arrest. Adoptive transfer of PMN, but not of MoPh, reversed the anti-inflammatory effects of Clo-Lip treatment, indicating that stunning of PMN rather than depletion of MoPh accounts for the anti-inflammatory effects of Clo-Lip in vivo. Our data highlight the need for a critical revision of the current literature on the role of MoPh in inflammation.


Asunto(s)
Ácido Clodrónico , Liposomas , Humanos , Ácido Clodrónico/farmacología , Neutrófilos , Inflamación , Antiinflamatorios/farmacología
9.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36623939

RESUMEN

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Asunto(s)
Células Dendríticas , Linfocitos T , Humanos , Microscopía Fluorescente/métodos
11.
Cell Rep ; 41(8): 111682, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417863

RESUMEN

In vitro studies suggest that mapping the spatiotemporal complexity of nuclear factor κB (NF-κB) signaling is essential to understanding its function. The lack of tools to directly monitor NF-κB proteins in vivo has hindered such efforts. Here, we introduce reporter mice with the endogenous RelA (p65) or c-Rel labeled with distinct fluorescent proteins and a double knockin with both subunits labeled. Overcoming hurdles in simultaneous live-cell imaging of RelA and c-Rel, we show that quantitative features of signaling reflect the identity of activating ligands, differ between primary and immortalized cells, and shift toward c-Rel in microglia from aged brains. RelA:c-Rel heterodimer is unexpectedly depleted in the nuclei of stimulated cells. Trajectories of subunit co-expression in immune lineages reveal a reduction at key cell maturation stages. These results demonstrate the power of these reporters in gaining deeper insights into NF-κB biology, with the spectral complementarity of the labeled NF-κB proteins enabling diverse applications.


Asunto(s)
FN-kappa B , Transducción de Señal , Ratones , Animales , FN-kappa B/metabolismo , Núcleo Celular/metabolismo , Envejecimiento , Línea Celular
12.
Nat Med ; 28(10): 2124-2132, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36109639

RESUMEN

Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease characterized by adaptive immune system activation, formation of double-stranded DNA autoantibodies and organ inflammation. Five patients with SLE (four women and one man) with a median (range) age of 22 (6) years, median (range) disease duration of 4 (8) years and active disease (median (range) SLE disease activity index Systemic Lupus Erythematosus Disease Activity Index: 16 (8)) refractory to several immunosuppressive drug treatments were enrolled in a compassionate-use chimeric antigen receptor (CAR) T cell program. Autologous T cells from patients with SLE were transduced with a lentiviral anti-CD19 CAR vector, expanded and reinfused at a dose of 1 × 106 CAR T cells per kg body weight into the patients after lymphodepletion with fludarabine and cyclophosphamide. CAR T cells expanded in vivo, led to deep depletion of B cells, improvement of clinical symptoms and normalization of laboratory parameters including seroconversion of anti-double-stranded DNA antibodies. Remission of SLE according to DORIS criteria was achieved in all five patients after 3 months and the median (range) Systemic Lupus Erythematosus Disease Activity Index score after 3 months was 0 (2). Drug-free remission was maintained during longer follow-up (median (range) of 8 (12) months after CAR T cell administration) and even after the reappearance of B cells, which was observed after a mean (±s.d.) of 110 ± 32 d after CAR T cell treatment. Reappearing B cells were naïve and showed non-class-switched B cell receptors. CAR T cell treatment was well tolerated with only mild cytokine-release syndrome. These data suggest that CD19 CAR T cell transfer is feasible, tolerable and highly effective in SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores Quiméricos de Antígenos , Antígenos CD19 , Autoanticuerpos , Niño , Ciclofosfamida , Citocinas , Femenino , Humanos , Inmunoterapia Adoptiva , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Receptores de Antígenos de Linfocitos B , Receptores Quiméricos de Antígenos/genética
13.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931085

RESUMEN

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Envejecimiento , Enfermedad de Alzheimer/genética , Animales , Encéfalo/patología , Humanos , Macrófagos/patología , Glicoproteínas de Membrana , Ratones , Microglía/patología , Receptores Inmunológicos
15.
Med Phys ; 49(8): 5107-5120, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35583171

RESUMEN

BACKGROUND: Computed tomography (CT) is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution can be severely degraded through low-dose acquisitions, highlighting the importance of effective denoising algorithms. PURPOSE: Most data-driven denoising techniques are based on deep neural networks, and therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity. METHODS: This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into any deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. In contrast to other models, our bilateral filter layer consists of only four trainable parameters and constrains the applied operation to follow the traditional bilateral filter algorithm by design. RESULTS: Although only using three spatial parameters and one intensity range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data and the 2016 Low Dose CT Grand Challenge data set. We report structural similarity index measures of 0.7094 and 0.9674 and peak signal-to-noise ratio values of 33.17 and 43.07 on the respective data sets. CONCLUSIONS: Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos
16.
Gut ; 71(12): 2414-2429, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862250

RESUMEN

OBJECTIVE: Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN: We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS: Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION: Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.


Asunto(s)
Colitis Ulcerosa , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4 , Colitis Ulcerosa/metabolismo , Tromboinflamación , Fibrina/metabolismo
18.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
19.
J Extracell Vesicles ; 10(12): e12159, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34664784

RESUMEN

The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Animales , Ratones
20.
Science ; 367(6475): 301-305, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31806695

RESUMEN

Despite ongoing (macro)pinocytosis of extracellular fluid, the volume of the endocytic pathway remains unchanged. To investigate the underlying mechanism, we used high-resolution video imaging to analyze the fate of macropinosomes formed by macrophages in vitro and in situ. Na+, the primary cationic osmolyte internalized, exited endocytic vacuoles via two-pore channels, accompanied by parallel efflux of Cl- and osmotically coupled water. The resulting shrinkage caused crenation of the membrane, which fostered recruitment of curvature-sensing proteins. These proteins stabilized tubules and promoted their elongation, driving vacuolar remodeling, receptor recycling, and resolution of the organelles. Failure to resolve internalized fluid impairs the tissue surveillance activity of resident macrophages. Thus, osmotically driven increases in the surface-to-volume ratio of endomembranes promote traffic between compartments and help to ensure tissue homeostasis.


Asunto(s)
Vigilancia Inmunológica , Macrófagos/inmunología , Pinocitosis/inmunología , Animales , Canales de Calcio/genética , Canales de Calcio/fisiología , Endosomas/inmunología , Transporte Iónico , Lípidos/inmunología , Ratones , Ratones Noqueados , Orgánulos/inmunología , Ósmosis , Sodio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Vacuolas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA