Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microbiol Spectr ; 12(5): e0000624, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619253

RESUMEN

Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases and cutaneous infections. However, treatment of M. abscessus infections remains particularly challenging, largely due to intrinsic resistance to a wide panel of antimicrobial agents. New therapeutic alternatives are urgently needed. Herein, we show that, upon limited irradiation with a blue-light source, newly developed porphyrin-peptide cage-type photosensitizers exert a strong bactericidal activity against smooth and rough variants of M. abscessus in planktonic cultures and in biofilms, at low concentrations. Atomic force microscopy unraveled important morphological alterations that include a wrinkled and irregular bacterial surface. The potential of these compounds for a photo-therapeutic use to treat M. abscessus skin infections requires further evaluations.IMPORTANCEMycobacterium abscessus causes persistent infections and is extremely difficult to eradicate. Despite intensive chemotherapy, treatment success rates remain very low. Thus, given the unsatisfactory performances of the current regimens, more effective therapeutic alternatives are needed. In this study, we evaluated the activity of newly described porphyrin-peptide cage-type conjugates in the context of photodynamic therapy. We show that upon light irradiation, these compounds were highly bactericidal against M. abscessus in vitro, thus qualifying these compounds for future studies dedicated to photo-therapeutic applications against M. abscessus skin infections.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Fármacos Fotosensibilizantes , Porfirinas , Mycobacterium abscessus/efectos de los fármacos , Porfirinas/farmacología , Porfirinas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Fotoquimioterapia/métodos , Luz
2.
Org Biomol Chem ; 22(7): 1484-1494, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38289387

RESUMEN

The development of photodynamic therapy requires access to smart photosensitizers which combine appropriate photophysical and biological properties. Interestingly, supramolecular and dynamic covalent chemistries have recently shown their ability to produce novel architectures and responsive systems through simple self-assembly approaches. Herein, we report the straightforward formation of porphyrin-peptide conjugates and cage compounds which feature on their surface chemical groups promoting cell uptake and specific organelle targeting. We show that they self-assemble, in aqueous media, into positively-charged nanoparticles which generate singlet oxygen upon green light irradiation, while also undergoing a chemically-controlled disassembly due to the presence of reversible covalent linkages. Finally, the biological evaluation in cells revealed that they act as effective photosensitizers and promote synergistic effects in combination with Doxorubicin.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Porfirinas/farmacología , Porfirinas/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete , Nanopartículas/química , Péptidos/farmacología
3.
Chem Sci ; 15(3): 879-895, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239698

RESUMEN

Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.

4.
Angew Chem Int Ed Engl ; 62(35): e202306265, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37438950

RESUMEN

Nature creates aquaporins to effectively transport water, rejecting all ions including protons. Aquaporins (AQPs) has brought inspiration for the development of Artificial Water Channels (AWCs). Imidazole-quartet (I-quartet) was the first AWC that enabled to self-assemble a tubular backbone for rapid water and proton permeation with total ion rejection. Here, we report the discovery of bis-alkylureido imidazole compounds, which outperform the I-quartets by exhibiting ≈3 times higher net and single channel permeabilities (107 H2 O/s/channel) and a ≈2-3 times lower proton conductance. The higher water conductance regime is associated to the high partition of more hydrophobic bis-alkylureido channels in the membrane and to their pore sizes, experiencing larger fluctuations, leading to an increase in the number of water molecules in the channel, with decreasing H-bonding connectivity. This new class of AWCs will open new pathways toward scalable membranes with enhanced water transport performances.

5.
Chembiochem ; 24(19): e202300333, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401911

RESUMEN

Nucleic acids are information-rich and readily available biomolecules, which can be used to template the polymerization of synthetic macromolecules. Here, we highlight the control over the size, composition, and sequence one can nowadays obtain by using this methodology. We also highlight how templated processes exploiting dynamic covalent polymerization can, in return, result in therapeutic nucleic acids fabricating their own dynamic delivery vector - a biomimicking concept that can provide original solutions for gene therapies.

6.
Chemistry ; 29(7): e202202921, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342312

RESUMEN

The use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied. The combinations that lead to nucleic acid complexation, in saline buffer, using different templates, from short siRNA to long DNA, are described. Finally, a successful peptidic DCP featuring six-arginine repeating unit that promote the safe and effective delivery of siRNA in live cancer cells was identified.


Asunto(s)
Ácidos Nucleicos , Polímeros , ADN , Relación Estructura-Actividad , ARN Interferente Pequeño/genética
7.
Chemistry ; 29(8): e202203062, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345945

RESUMEN

The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.


Asunto(s)
ADN , Ácidos Nucleicos , ADN/química , Cationes , Transfección , Vectores Genéticos
8.
Chemistry ; 29(8): e202203311, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36346344

RESUMEN

The increased importance of RNA-based therapeutics comes with a need to develop next-generation stimuli-responsive systems capable of binding, transporting and releasing RNA oligomers. In this work, we describe triazolium-based amphiphiles capable of siRNA binding and enzyme-responsive release of the nucleic acid payload. In aqueous medium, the amphiphile self-assembles into nanocarriers that can disintegrate upon the addition of esterase. Key to the molecular design is a self-immolative linker that is anchored to the triazolium moiety and acts as a positively-charged polar head group. We demonstrate that addition of esterase leads to a degradation cascade of the linker, leaving the neutral triazole compound unable to form complexes and therefore releasing the negatively-charged siRNA. The reported molecular design and overall approach may have broad utility beyond this proof-of-principle study, because the underlying CuAAC "click" chemistry allows bringing together three groups very efficiently as well as cleaving off one of the three groups under the mild action of an esterase enzyme.


Asunto(s)
Esterasas , ARN Bicatenario , ARN Interferente Pequeño
9.
Molecules ; 27(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36235185

RESUMEN

Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores. Two types of fluorescent building blocks bearing neutral or cationic side groups on the fluorene moiety are considered in order to assess the role of the number of cationic units on complexation with DNA. The (chir)optical properties of the building blocks, the DCPs, and their complexes with several types of DNA are explored, providing details on the formation of supramolecular complexes and on their stability in aqueous solutions. The DNA-templated formation of DCPs is demonstrated, which provides new perspectives on the assembly of fluorescent DCP based on the nucleic acid structure.


Asunto(s)
Polímeros , Materiales Inteligentes , Arginina , Cationes/química , ADN/química , Fluorenos , Polímeros/química , Tiofenos/química
10.
Chem Sci ; 13(4): 909-933, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35211257

RESUMEN

Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.

11.
Biomacromolecules ; 23(1): 431-442, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34910463

RESUMEN

Smart stimuli-responsive fluorescent materials are of interest in the context of sensing and imaging applications. In this project, we elaborated multidynamic fluorescent materials made of a tetraphenylethene fluorophore displaying aggregation-induced emission and short cysteine-rich C-hydrazide peptides. Specifically, we show that a hierarchical dynamic covalent self-assembly process, combining disulfide and acyl-hydrazone bond formation operating simultaneously in a one-pot reaction, yields cage compounds at low concentration (2 mM), while soluble fluorescent dynamic covalent networks and even chemically cross-linked fluorescent organogels are formed at higher concentrations. The number of cysteine residues in the peptide sequence impacts directly the mechanical properties of the resulting organogels, Young's moduli varying 2500-fold across the series. These materials underpinned by a nanofibrillar network display multidynamic responsiveness following concentration changes, chemical triggers, as well as light irradiation, all of which enable their controlled degradation with concomitant changes in spectroscopic outputs─self-assembly enhances fluorescence emission by ca. 100-fold and disassembly quenches fluorescence emission.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Fluorescencia , Colorantes Fluorescentes/química
12.
Chempluschem ; 86(11): 1499, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636165

RESUMEN

Invited for this month's cover are the collaborating groups of Dr. Mihail Barboiu from Institut Européen des Membranes and Dr. Sebastien Ulrich from Institut des Biomolécules Max Mousseron Montpellier, France and Prof. Yan Zhang from Jiangnan University, Wuxi, China. The cover feature shows an artistic concept describing an evolutionary approach to the generation of dynamic inhibitors and activators of Carbonic Anhydrase toward constitutional self-selection strategies. More information can be found in the Minireview by Mihail Barboiu, and co-workers.

13.
Chempluschem ; 86(11): 1500-1510, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34327867

RESUMEN

In this review we consider one important member of the metalloenzymes family, the carbonic anhydrase (CA), involved in the treatment of several common diseases. Different approaches have emerged to regulate the activity of CA, mostly acting on the inner catalytic active site or outer microenvironment of the enzyme, leading to inhibition or activation of CA. In recent years, gradually increased attention has focused on the adoption of constitutional dynamic chemistry (CDC) strategies for the screening and discovery of potent inhibitors or activators. The participation of reversible covalent bonds enabled the enzyme itself to select the optimal ligands obtained from diverse building blocks with comparatively higher degree of variety, resulting in the fittest recognition of enzyme ligands from complex dynamic systems. With the increasing implementation of CDC for enzyme targets, it shows great potential for drug discovery or CO2 capture applications.

14.
Angew Chem Int Ed Engl ; 60(11): 5783-5787, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289957

RESUMEN

Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.


Asunto(s)
Polímeros/metabolismo , ARN Interferente Pequeño/metabolismo , Carbohidratos/química , Glicosilación , Células HCT116 , Humanos , Ligandos , Conformación Molecular , Polimerizacion , Polímeros/síntesis química , Polímeros/química , ARN Interferente Pequeño/química , Electricidad Estática
15.
J Mater Chem B ; 8(41): 9385-9403, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33048107

RESUMEN

Dynamic covalent polymers are materials formed by reversible covalent bonds and non-covalent interactions through an adaptive constitutional dynamic chemistry. The implementation of dynamic covalent polymers in gene delivery has recently emerged due to their responsive and adaptive features. Indeed, such an approach offers the alluring promise of discovering optimal delivery vectors self-fitted to their nucleic acid cargos and responsive to environmental changes (e.g. pH changes or the presence of a biomolecular target). This review will discuss more precisely the structural features of the molecular building blocks used so far, the architecture of the resulting dynamic covalent polymers from linear to 2D and 3D, and the covalent and supramolecular self-assembly processes at play in nucleic acid recognition and delivery, showcasing in particular the very few examples of adaptive self-assembly of dynamic covalent polymers templated by nucleic acids and responsive to the presence of biomolecular targets found in cell membranes that facilitate cell entry.


Asunto(s)
Cationes/química , Ácidos Nucleicos/administración & dosificación , Polímeros/química , Transfección/métodos , Animales , Cationes/metabolismo , Membrana Celular/metabolismo , Técnicas de Transferencia de Gen , Humanos , Ácidos Nucleicos/genética , Ácidos Nucleicos/farmacocinética , Polímeros/metabolismo
16.
ChemistryOpen ; 9(4): 480-498, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32328404

RESUMEN

DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.


Asunto(s)
ADN/química , Sustancias Macromoleculares/química , Secuencia de Bases , Catálisis , Dimerización , Técnicas de Transferencia de Gen , Enlace de Hidrógeno , Sustancias Intercalantes/química , Conformación Molecular , Nanocables/química , Óptica y Fotónica , Oxidación-Reducción , Polimerizacion
17.
Mater Chem Front ; 4(2): 489-506, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33791102

RESUMEN

The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.

18.
Int J Pharm ; 569: 118585, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31376467

RESUMEN

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2­PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2­PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2­PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2­PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2­PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.


Asunto(s)
Silenciador del Gen , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Porfirinas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Línea Celular Tumoral , Terapia Genética , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Fármacos Fotosensibilizantes/química , Porfirinas/química , ARN Interferente Pequeño/química
19.
Front Chem ; 7: 503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31380348

RESUMEN

We previously reported novel fluorescent aromatic cages that are self-produced using a set of orthogonal dynamic covalent reactions, operating simultaneously in one-pot, to assemble up to 10 components through 12 reactions into a single cage-type structure. We now introduce N-functionalized amino acids as new building blocks that enable tuning the solubility and analysis of the resulting cages. A convenient divergent synthetic approach was developed to tether different side chains on the N-terminal of a cysteine-derived building block. Our studies show that this chemical functionalization does not prevent the subsequent self-assembly and effective formation of desired cages. While the originally described cages required 94% DMSO, the new ones bearing hydrophobic side chains were found soluble in organic solvents (up to 75% CHCl3), and those grafted with hydrophilic side chains were soluble in water (up to 75% H2O). Fluorescence studies confirmed that despite cage functionalization the aggregation-induced emission properties of those architectures are retained. Thus, this work significantly expands the range of solvents in which these self-assembled cage compounds can be generated, which in turn should enable new applications, possibly as fluorescent sensors.

20.
Front Chem ; 7: 493, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355185

RESUMEN

Guanine-quadruplexes (G4s) are targets for anticancer therapeutics. In this context, human telomeric DNA (HT-DNA) that can fold into G4s sequences are of particular interest, and their stabilization with small molecules through a visualizable process has become a challenge. As a new type of ligand for HT-G4, we designed a tetraimidazolium tetraphenylethene (TPE-Im) as a water-soluble light-up G4 probe. We study its G4-binding properties with HT-DNA by UV-Visible absorption, circular dichroism and fluorescence spectroscopies, which provide insights into the interactions between TPE-Im and G4-DNA. Remarkably, TPE-Im shows a strong fluorescence enhancement and large shifts upon binding to G4, which is valuable for detecting G4s. The association constants for the TPE-Im/G4 complex were evaluated in different solution conditions via isothermal titration calorimetry (ITC), and its binding modes were explored by molecular modeling showing a groove-binding mechanism. The stabilization of G4 by TPE-Im has been assessed by Fluorescence Resonance Energy Transfer (FRET) melting assays, which show a strong stabilization (ΔT 1/2 around +20°C), together with a specificity toward G4 with respect to double-stranded DNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA